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Abstract 

 

The proposed disposal scenario for high-level nuclear waste (spent fuel) in Canada is 

emplacement within a sealed, deep geological repository (DGR) located in either granitic rock or 

sedimentary clay. Disposal is based on a multi-barrier approach, with the primary barrier being a 

sealed container which could be either dual-walled with a copper shell over an inner carbon 

steel vessel for granitic rock or a single thick-walled steel container for sedimentary clay. This 

study focuses on the corrosion behaviour of A516 Gr70 carbon steel as well as the corrosion 

products formed in a variety of groundwater compositions and concentrations expected within 

a sedimentary clay DGR environment. In particular, the effects of groundwater anions such as Cl-

, HCO3
-/CO3

2-, and SO4
2- on the corrosion behaviour and corrosion product compositions and 

morphologies were studied. Several electrochemical and surface characterization techniques 

were employed to investigate the corrosion behaviour of the steel as well as the identities and 

morphologies of the subsequent corrosion products.  

It was shown that in the presence of trace levels of O2, Cl- is able to induce passivation of the 

steel surface by the catalytic conversion of Fe2+ to Fe3+ with passivation induced in this manner 

then leading to the initiation of breakdown sites. The addition of HCO3
-/CO3

2- to highly 

concentrated Cl- solutions led to a competition between the catalytic formation of FeIII oxides 

and the stabilization of soluble Fe2+ by complexation with HCO3
-/CO3

2-. In addition, an increase in 

the total carbonate concentration increased the breakdown potential by preventing the 

stabilization of pits by buffering the development of acidity required for propagation. In 

contrast, SO4
2- was shown not to interfere with the Cl--catalyzed oxidation to FeIII oxides in the 

presence of trace O2 but to have a significant effect on the breakdown potential, possibly due to 

its ability to be more strongly adsorbed to the FeIII surface.  

Electrochemical experiments performed under totally anaerobic conditions showed that an 

increase in [Cl-] promoted corrosion leading to an increased roughening of the steel surface. This 

was attributed to an acceleration of the cathodic reaction on exposed Fe3C bands from the 

pearlite structure. The addition of groundwater ions led to a suppression of the anodic kinetics 

due to the accumulation of CaCO3 crystals. Addition of HCO3
-/CO3

2- to buffer the pH to 8.85 led 

to a significant decrease in the corrosion rate. This was attributed to the growth of a Fe3O4 

barrier layer with additional protection provided by an outer layer of Fe2(OH)2CO3.  
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Complementary long-term corrosion studies showed that an initial period of humid air exposure 

led to the formation of a γ-Fe2O3 layer which was subsequently reduced to Fe3O4 by galvanic 

coupling to steel dissolution over approximately the first 100 days of exposure. Corrosion 

occurred preferentially at pearlite grains due to the lower cathodic overpotential on the Fe3C 

lamellae. Addition of groundwater ions suppressed steel corrosion due to the rapid deposition 

of CaSO4 and CaCO3 crystals. High levels of Mg2+ were shown to promote the formation of 

aragonite, a polymorph of CaCO3 known to cause a reduction in steel corrosion rates. Finally, the 

addition of HCO3
-/CO3

2- led to the rapid formation of Fe2(OH)2CO3, attributed to the initial γ-

Fe2O3 layer whose reduction led to high [Fe2+] and the promotion of Fe2(OH)2CO3 deposition. 

However, thermodynamic transformation of Fe2(OH)2CO3 to FeCO3 appeared to induce some 

localized corrosion/pitting processes.  

The influence of H2O2 on steel corrosion under deaerated and totally anaerobic conditions was 

studied to determine whether radiolytic oxidants produced by the radiation fields in the fuel 

waste form would influence corrosion of the inside of a failed waste container. The interaction 

of the H2O2 with the steel was confirmed by the presence of FeIII-containing corrosion products. 

The results showed that continuous steel corrosion can be expected in an anaerobic 

environment but that passivation occurred in the deaerated experiment. However, passivation 

was attributed to the higher levels of dissolved O2 present and not the addition of H2O2 used as 

a surrogate for radiolytic oxidants. As such, active steel corrosion should be maintained inside a 

failed container and the soluble corrosion products (Fe2+ and H2) will be available to suppress 

fuel corrosion and radionuclide release.  

Keywords: 

Carbon Steel, corrosion, corrosion product, corrosion rate, chloride, carbonate, sulphate, Raman 

spectroscopy, SEM, electrochemistry
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Chapter 1 

Introduction 

1.1. PROJECT BACKGROUND 

Currently, nuclear power accounts for over 50% of Ontario’s electricity needs and 15% of 

Canada’s overall electricity supply [1, 2]. Nuclear power is an attractive means of generating 

electricity as it is one of the safest and cleanest forms of energy generation. However, for 

nuclear energy to remain a viable and sustainable option, the issue of waste disposal must be 

addressed. The main waste product produced from nuclear energy in Canada is the used CANDU 

(CANadian Deuterium Uranium) fuel bundles, consisting of high-density ceramic pellets of 

uranium dioxide (UO2), which are discharged from the reactor core. Canada presently has 19 

operational reactors which are producing   ̴88,000 used fuel bundles per year [3]. Currently, 

there are a total of 2.6 million used fuel bundles being stored at the reactor sites with a 

projected scenario of 4.4 million bundles by the end of all nuclear reactor lifetimes [3].  

The current design for the long-term management of used nuclear fuel in Canada is based on a 

multi-barrier approach and deep geological disposal. The barrier system consists of the used fuel 

bundles, a durable metal container, a clay buffer/sealing system, a deep, stable, geologic 

environment and the geologic formation. The current proposal is to place the repository at a 

nominal depth between 500 and 1000 m in either the crystalline rock of the Canadian Shield or 

the Ordovician sedimentary rock formations in Ontario’s Michigan Basin [4, 5]. A key barrier is 

the container in which the fuel bundles will be sealed. For a crystalline repository environment 

the proposed container will consist of an inner carbon steel vessel to provide the structural 

support for an outer corrosion resistant copper coating. For sedimentary clay environments, a 

single-walled container made only from carbon steel has been considered due to the significant 

cost reduction over the coated container design and the fact a shorter-lived steel container can 

be considered due to the enhanced sealing properties provided by the sedimentary clay. Figure 

1-1 illustrates the concept for the deep geological repository (DGR) for both crystalline rock and 

sedimentary clay host environments.  

While Canada has chosen to proceed with the copper coated container design, many countries 

(for example, France, Switzerland, and Belgium) are still considering the single-walled carbon 

steel container [6]. It is therefore judicious to assess the corrosion damage which the steel 
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container may experience in the saline groundwaters anticipated. Furthermore, while not 

expected to fail, it remains beneficial to study the corrosion behaviour of the steel vessel should 

the copper coating of the dual-walled design be compromised. 

 

Figure 1-1: Proposed design for a Canadian deep geologic repository (DGR) using (a) a dual-

walled copper coated container for crystalline host rock; (b) a single-walled carbon steel 

container for sedimentary host clay [7]. 

1.2. AQUEOUS CORROSION 

1.2.1. Thermodynamics of Corrosion 

Corrosion is the degradation of a substance (usually a metal) caused by an interfacial reaction 

with the environment to which it is exposed [8]. Corrosion processes can be viewed as a short 

circuited galvanic cell in which an anodic reaction is coupled to a cathodic reaction. For example, 

the oxidation of Fe in anaerobic aqueous media involves the oxidation of Fe and the reduction 

of water, 

 𝐹𝑒 → 𝐹𝑒2+ + 2𝑒− (1-1) 

 2𝐻2𝑂 + 2𝑒− → 𝐻2 + 2𝑂𝐻− (1-2) 
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The overall corrosion reaction is the sum of these two half reactions: 

 𝐹𝑒 + 2𝐻2𝑂 → 𝐹𝑒2+ + 𝐻2 + 2𝑂𝐻− (1-3) 

 

For the overall reaction in equation 1-3 to occur spontaneously, the free energy (∆𝐺𝑟𝑥𝑛) of the 

reaction given by 

 ∆𝐺𝑟𝑥𝑛 = ∑ 𝑣𝑃𝜇𝑃 − ∑ 𝑣𝑅𝜇𝑅 (1-4) 

 

must be negative. In equation 1-4 𝑣P and 𝑣R are the stoichiometric coefficients of the products 

and reactants and 𝜇P and 𝜇R are the chemical potentials of the products and reactants. The 

chemical potential of any species 𝑖 can then be written as a function of its activity which 

accounts for deviations from ideality 

 𝜇𝑖 = 𝜇𝑖
° + 𝑅𝑇 ln 𝛼𝑖  (1-5) 

 

where 𝜇𝑖
° represents the chemical potential of species 𝑖 in its standard state, 𝑅 is the gas 

constant (8.314 J mol-1 K-1), 𝑇 is the temperature in Kelvin, and 𝛼𝑖 is the activity of species 𝑖. 

Substitution of equation 1-5 into equation 1-4 for the simple reaction given in equation 1-6 

would yield equation 1-7, 

 𝑎𝐴 + 𝑏𝐵 → 𝑐𝐶 + 𝑑𝐷 (1-6) 

 
∆𝐺 = ∆𝐺° + 𝑅𝑇 ln (

𝛼𝐶
𝑐 𝛼𝐷

𝑑

𝛼𝐴
𝑎𝛼𝐵

𝑏) (1-7) 

 

Additionally, the free energy (∆𝐺) and standard free energy (∆𝐺°) of an electrochemical system 

can be described by 

 ∆𝐺 = −𝑛𝐹𝐸 (1-8) 

 ∆𝐺° = −𝑛𝐹𝐸° (1-9) 

 

where 𝑛 is the number of electrons transferred in the reaction, 𝐹 is Faraday’s constant (96485 C 

mol-1), 𝐸 is the equilibrium potential, and 𝐸° is the standard equilibrium potential. Substituting 

equations 1-8 and 1-9 into equation 1-7 yields the Nernst Equation 
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𝐸𝑒 = 𝐸° −

𝑅𝑇

𝑛𝐹
ln (

𝛼𝐶
𝑐𝛼𝐷

𝑑

𝛼𝐴
𝑎𝛼𝐵

𝑏) (1-10) 

 

which can be used to calculate the equilibrium potential for a reversible reaction under 

conditions other than the standard state. However, in dilute solutions the activity of each 

species can be adequately approximated by their concentration and equation 1-10 can be re-

written as 

 
𝐸𝑒 = 𝐸° −

𝑅𝑇

𝑛𝐹
ln (

[𝐶]𝑐[𝐷]𝑑

[𝐴]𝑎[𝐵]𝑏) (1-11) 

 

For corrosion reactions, the driving force will be the difference in the equilibrium potentials, 

derived from the Nernst Equation, between the anodic half reaction, 

 𝑀𝑛+ + 𝑛𝑒− ⇆ 𝑀 (1-12) 

 
𝐸𝑀𝑛+

𝑀⁄

𝑒 = 𝐸𝑀𝑛+

𝑀⁄

° −
𝑅𝑇

𝑛𝐹
ln (

1

[𝑀𝑛+]
) (1-13) 

 

and the cathodic half reaction. 

 𝑂𝑥 + 𝑛𝑒− ⇆ 𝑅𝑒𝑑 (1-14) 

 
𝐸𝑅𝑒𝑑

𝑂𝑥⁄
𝑒 = 𝐸𝑅𝑒𝑑

𝑂𝑥⁄
° −

𝑅𝑇

𝑛𝐹
ln (

[𝑅𝑒𝑑]

[𝑂𝑥]
) (1-15) 

The thermodynamic possibilities for a material exposed to an aqueous medium can be 

calculated from the Nernst equation and a table of standard potentials and represented in the 

form of a Pourbaix (E-pH) diagram, which summarizes these possibilities as a function of 

potential and pH [9]. Figure 1-2 shows the Pourbaix diagram for the Fe-H2O system for different 

activities of Fe2+ at 25°C. Since most corrosion reactions take place in aqueous media, the 

stability limits for the oxidation and reduction of H2O define the range of applicable conditions. 

The Nernst equation for the reduction of water is given by,  
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 2𝐻2𝑂 + 2𝑒− → 𝐻2 + 2𝑂𝐻− (1-16) 

 
𝐸𝑒 = 𝐸° −

(8.314)(295.15)

(2)(96485)
ln[𝑂𝐻−]2 (1-17) 

 
𝐸𝑒 = 𝐸° −

0.059

2
log[𝑂𝐻−]2 (1-18) 

 

where the partial pressure of H2 is assumed to 1. Rearranging the equation in terms of pH yields 

 𝐸𝑒 = −0.059 𝑝𝐻 (1-19) 

 

Similarly for the oxidation of water with an O2 partial pressure of 1,  

 𝑂2 + 4𝐻+ + 4𝑒− ⇆ 2𝐻2𝑂 (1-20) 

and,    

 𝐸𝑒 = 1.23 𝑉 − 0.059 𝑝𝐻 (1-21) 

 

 

Figure 1-2: Pourbaix diagram for the Fe-H2O system with various Fe2+ activities at 25°C. Solid 

lines represent the stability ranges for the solid species while the dotted lines show the stability 

ranges for aqueous species (not considered here) [9].  
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Plotting these two equations in Figure 1-2 yields the diagonal dashed lines (a) and (b) between 

which H2O is thermodynamically stable and aqueous corrosion may be supported.  

For Fe dissolution,  

 𝐹𝑒2+ + 2𝑒− ⇆ 𝐹𝑒 (1-22) 

 𝐸° = −0.447 𝑉 (1-23) 

the Nernst equation is 

 
𝐸𝐹𝑒2+

𝐹𝑒⁄

𝑒 = 𝐸𝐹𝑒2+

𝐹𝑒⁄

° −
𝑅𝑇

2𝐹
log

1

[𝐹𝑒2+]
 (1-24) 

 𝐸𝐹𝑒2+

𝐹𝑒⁄

𝑒 = −0.447 𝑉 + 0.0295 log[𝐹𝑒2+] (1-25) 

 

Since the dissolution reaction (equation 1-22) involves no protons, the equilibrium potential is 

independent of pH and appears as a series of horizontal lines (line (23) in Figure 1-2) dependent 

only on the concentration of the Fe2+. At potentials below this line Fe is stable while at 

potentials above this line it will oxidize to aqueous Fe2+. While the stability region of the Fe 

metal is seen to become larger as [Fe2+] increases, it can be noted from Figure 1-2 that there is 

no region on the E-pH diagram in which Fe metal is stable in the presence of water. As such, Fe 

is considered to be a base metal.  

In addition, Fe can react to form Fe3O4 via the reaction 

 𝐹𝑒3𝑂4 + 4𝐻2𝑂 + 8𝑒− ⇆ 3𝐹𝑒 + 8𝑂𝐻− (1-26) 

 

for which the Nernst Equation can be expressed as 

 
𝐸𝐹𝑒

𝐹𝑒3𝑂4
⁄

𝑒 = 𝐸𝐹𝑒3𝑂4
𝐹𝑒⁄

° −
𝑅𝑇

8𝐹
log[𝑂𝐻−]8 (1-27) 

 𝐸𝐹𝑒
𝐹𝑒3𝑂4

⁄

𝑒 = −0.085 𝑉 − 0.059 𝑝𝐻 (1-28) 

 

It is clear from equation 1-28 that the equilibrium potential for the formation of Fe3O4 is 

dependent on both the potential and the pH. As such, this reaction will be represented by a 

diagonal line with a slope of -0.059, line (13) in Figure 1-2. Above this line Fe3O4 is the stable 

species, while below Fe metal is stable. Fe3O4 can then be oxidized to form Fe2O3 by the reaction  
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 3𝐹𝑒2𝑂3 + 2𝐻+ + 2𝑒− ⇆ 2𝐹𝑒3𝑂4 + 𝐻2𝑂 (1-29) 

 

for which the Nernst equation can be expressed as 

 
𝐸𝐹𝑒3𝑂4

𝐹𝑒2𝑂3
⁄

𝑒 = 𝐸𝐹𝑒3𝑂4
𝐹𝑒2𝑂3

⁄

° −
𝑅𝑇

2𝐹
log

1

[𝐻+]2
 (1-30) 

 𝐸𝐹𝑒3𝑂4
𝐹𝑒2𝑂3

⁄

𝑒 = 0.221 𝑉 − 0.059 𝑝𝐻 (1-31) 

 

The oxidation of Fe3O4 to Fe2O3 is seen as the diagonal line (17) in Figure 1-2 below which Fe3O4 

is the stable species and above which Fe2O3 is the stable species.   

Furthermore, the Fe2+ species produced via equation 1-22 can also oxidize to either Fe3O4 or 

Fe2O3 via the following reactions 

 𝐹𝑒3𝑂4 + 8𝐻+ + 2𝑒− ⇆ 3𝐹𝑒2+ + 4𝐻2𝑂 (1-32) 

 𝐹𝑒2𝑂3 + 6𝐻+ + 2𝑒− ⇆ 2𝐹𝑒2+ + 3𝐻2𝑂 (1-33) 

 

leading to lines (26) and (28) in Figure 1-2 calculated by the following Nernst Equations 

 𝐸𝐹𝑒2+

𝐹𝑒3𝑂4
⁄

𝑒 = 0.980 𝑉 − 0.2364 𝑝𝐻 − 0.0886 log[𝐹𝑒2+] (1-34) 

 𝐸𝐹𝑒2+

𝐹𝑒2𝑂3
⁄

𝑒 = 0.728 𝑉 − 0.1773 𝑝𝐻 − 0.059 log[𝐹𝑒2+] (1-35) 

Figure 1-3 shows a simplified Pourbaix diagram highlighting the regions in which the Fe is 

immune to corrosion, in a passive state due to Fe3O4 or Fe2O3 film formation, and in active 

corrosion conditions. From Figure 1-3 it is clear that passivation of Fe is only possible for 

alkaline, oxidizing conditions. While Pourbaix diagrams are useful in determining which species 

may be thermodynamically stable under specific conditions, they do not give any information on 

the properties of the oxide species produced, in particular its ability to passivate the Fe. In 

addition, Pourbaix diagrams are unable to provide any information on the kinetics of the system.  
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Figure 1-3: Simplified Pourbaix diagram for the Fe-H2O system showing the regions of immunity, 

corrosion, and passivation (by Fe3O4 and Fe2O3) at 25°C. Dashed lines (a) and (b) represent the 

stability regions of H2O [9].  

1.2.2. Kinetics of Corrosion 

While thermodynamics is useful in predicting which reactions may occur in a corrosion process, 

the corrosion kinetics express the rates at which corrosion can occur. In a corrosion cell, the 

positive anodic current due to the dissolution of the metal is equal and opposite in sign to the 

negative current from the reduction of the oxidant. The resulting corrosion current (ICORR), is 

carried by the electrons through the metal and by ions in the solution.  

 𝐼𝐶𝑂𝑅𝑅 = 𝐼𝑎 = |𝐼𝑐| (1-36) 

 

A simple way to measure the corrosion current is through mass loss measurements using 

Faraday’s law,  

 
𝐼𝐶𝑂𝑅𝑅 =

𝑚𝑛𝐹

𝑀𝑡
 (1-37) 

 
𝑅𝑎𝑡𝑒 =

𝐼𝐶𝑂𝑅𝑅𝑀

𝑛𝐹
 (1-38) 

 

where 𝑚 is the mass (g) of corroded metal, 𝑀 is the molar mass of the material (g mol-1), and 𝑡 
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is the duration of exposure in seconds. While this is a relatively straightforward way to 

determine the corrosion rate, ICORR is often unknown since it cannot be readily measured.  

The equal rates of the cathodic and anodic reactions for a metal dissolution reaction at 

equilibrium can be expressed as an exchange current density (𝑖0), 

 𝑖0 = 𝑖𝑎 = |𝑖𝑐| (1-39) 

 

where 𝑖𝑎 is the anodic current density for the forward reaction and 𝑖𝑐 is the cathodic current 

density for the reverse reaction. The current-potential relationship can be described by the 

Butler-Volmer (B-V) equation 

 
𝑖𝑛𝑒𝑡 = 𝑖0 [𝑒

(
𝛼𝑛𝐹
𝑅𝑇

𝜂)
− 𝑒

(−
(1−𝛼)𝑛𝐹

𝑅𝑇
𝜂)

] (1-40) 

 

where 𝛼 is the transfer coefficient of the reversible reaction and 𝜂 is the overpotential defined 

with reference to the equilibrium potential (𝜂 = 𝐸 ± 𝐸𝑒). Figure 1-4 illustrates the B-V 

relationship for the reversible Fe dissolution/precipitation reaction. When the reaction is 

polarized to a large anodic overpotential, the current can be simplified to 

 
𝑖𝑎 = 𝑖0 [𝑒

(
𝛼𝑛𝐹
𝑅𝑇

𝜂)
] (1-41) 

 

Similarly, for large cathodic overpotentials the current can be expressed by 

 
𝑖𝑐 = 𝑖0 [−𝑒

(−
(1−𝛼)𝑛𝐹

𝑅𝑇
𝜂)

] (1-42) 

 

Writing equations 1-41 and 1-42 logarithmically yields the following linear relationships 

 
log 𝑖𝑎 = log 𝑖0 +

𝛼𝑛𝐹𝜂

2.303𝑅𝑇
 (1-43) 

 
log 𝑖𝑐 = log 𝑖0 −

(1 − 𝛼)𝑛𝐹𝜂

2.303𝑅𝑇
 (1-44) 

 

Plotting the 𝜂 versus log 𝑖𝑎 gives an intercept of 𝑖0 and a slope of 
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Figure 1-4: Potential-current (Butler-Volmer) relationship for the Fe dissolution/deposition 

reaction. Solid lines indicate the measureable current while the dashed lines show the partial 

currents for the forward and reverse reactions [10]. 

 

 2.303𝑅𝑇

𝛼𝑛𝐹
 (1-45) 

 

which is known as the anodic Tafel slope, commonly denoted by the coefficient β. A similar 

process can be performed for log 𝑖𝑐 to obtain the cathodic Tafel slope.  

However, a corrosion reaction involves the coupling of two separate reactions at the unique 

potential at which the anodic and cathodic currents are equal and opposite in sign (equation 1-

36), Figure 1-5. If the equilibrium potentials of the half reactions are sufficiently separated, the 

point at which ECORR occurs will involve only the anodic current for Fe dissolution and the 

cathodic current for proton reduction. As such, 𝑖𝐶𝑂𝑅𝑅 will exhibit a BV-like relationship as given 

by the Wagner-Traud equation,  
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𝑖𝑛𝑒𝑡 = 𝑖𝐶𝑂𝑅𝑅 [𝑒

(
2.3(𝐸−𝐸𝐶𝑂𝑅𝑅)

𝛽𝑎
)

− 𝑒
(

2.3(𝐸−𝐸𝐶𝑂𝑅𝑅)
𝛽𝑐

)
] (1-46) 

where 𝛽𝑎 and 𝛽𝑐 are the anodic and cathodic Tafel coefficients. Plotting equation 1-46 

logarithmically yields an Evan’s diagram which can be used to predict the behaviour of the 

anodic and cathodic half reactions based on changes in ECORR and 𝑖𝐶𝑂𝑅𝑅, Figure 1-6. The position 

of ECORR will be determined by the half reaction with the larger 𝑖0 while the kinetics of the 

reaction with the smaller 𝑖0 will control the value of 𝑖𝐶𝑂𝑅𝑅. 

 

Figure 1-5: Current-potential relationships for the Fe dissolution and proton reduction reactions 

(solid black lines). As shown, the anodic reaction has a large 𝒊𝟎 while the cathodic reaction has a 

small 𝒊𝟎. The dashed red line shows the current that would be measured for the coupled 

reaction. As shown, the anodic reaction has a large 𝒊𝟎 compared to the cathodic reaction and 

hence determines the position of ECORR [10]. 
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Figure 1-6: Current-potential relationships for the anodic dissolution of Fe and the cathodic 

reduction of protons plotted as an Evan’s diagram [10]. 
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1.3. MATERIALS BACKGROUND 

1.3.1. Carbon Steel  

Iron is an allotropic metal which, depending on temperature, can exist in at least three different 

structures [11, 12]. Figure 1-7 shows that as liquid Fe metal is cooled it first forms a solid body-

centered cubic (BCC) δ-phase, known as delta ferrite, followed by a face-centered cubic (FCC) γ-

phase, known as austenite, before finally reverting back to a BCC structure, designated the α-

phase. The α-phase, also known as ferrite, can exist in both a non-magnetic and a magnetic form 

above and below 768 °C, respectively. While the magnetic properties change at this 

temperature, the Fe structure remains unchanged based on X-ray studies [11]. At increased 

pressures, a third allotrope (ε-Fe) of hexagonal close-packed (HCP) structure is possible, Figure 

1-8 [12]. The alloying elements within the steel, most importantly the C content, will determine 

the point at which these structural changes occur. Fe alloys are classified as either steels (<2.14 

wt% C) or cast irons (>2.14 wt% C) [11]. The equilibrium phase diagram for the Fe-C system 

showing these distinctions is given in Figure 1-9. Carbon steel, or mild steel, is a Fe-C alloy with 

low levels of impurities such as Mn, S and Si, where C atoms are located interstitially within the 

octahedral holes of the BCC structure of the α-Fe [12]. Carbon steels can be classified into three 

major categories: low, medium, and high-carbon steel based on an increasing C content. Low-

carbon steels are generally classified by a C content of less than 0.25% and are the most widely 

produced [13].  

Figure 1-10 shows the equilibrium diagram for steels with a C content lower than 2%.  The 

vertical dashed lined indicates a low-carbon steel containing roughly 0.25% C. Initially, at point c, 

only the austenitic phase is present. Upon cooling to point d, the steel begins to undergo an 

allotropic change to BBC α-Fe, indicated in red. Because C is more soluble in the interstitial 

spaces of the FCC structure, the change to BCC results in a decrease in C solubility, leading to the 

removal of C atoms from solid solution in regions undergoing transition to α-Fe and their re-

dissolution in the residual austenite. When the temperature reaches the point designated by the 

horizontal red line, the remaining FCC austenite, with a C content which has been increased to 

0.8%, undergoes a eutectoid reaction to form α-Fe and the precipitation of cementite (Fe3C, 

6.67 wt% C) in regions surrounding the α-Fe.  This process leads to the formation of alternating 

bands of α-Fe and Fe3C, collectively known as pearlite. As indicated by point f in Figure 1-10, 
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there is a mixture of two different types of α-Fe. The ferrite initially formed before the eutectoid 

temperature is known as proeutectoid α-Fe while the ferrite within the pearlite structure is  

 

Figure 1-7: Cooling curve showing the allotropic conversions for pure Fe at atmospheric pressure 
[14]. 

 

 

Figure 1-8: Triple point showing the possible interconversions of Fe allotropes α (BCC), γ (FCC) , 

and ε (HCP) [12]. 
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known as eutectoid α-Fe due to its formation about the eutectoid temperature [15]. The 

amount of Fe3C, and therefore pearlite, is dependent on the amount of C present within the 

alloy. Increasing the C content will increase the pearlite percentage until it is the only phase 

present (0.8 wt% C) [12]. Figure 1-11 shows optical images of the α-Fe and pearlite structure for 

the A516 Gr70 (0.23 wt% C) steel used in the studies presented in this thesis. The interstitial C 

atoms and the Fe3C within the pearlite are what help to inhibit the glide of dislocations within 

the lattice structure, thus increasing the strength of the material over that of pure iron [11, 12].  

While the low carbon levels (< 0.25 wt%) of low-carbon steels mean that they are softer and 

weaker than their high-carbon counterparts, they are an ideal structural material as they 

maintain their toughness and ductility as well as ease of machinability  and weldability [12, 13]. 

More than a billion tonnes of steel are consumed annually with low-carbon steels being used in 

castings, structural shapes, automobile components and sheets which are used in the 

fabrication of pipelines, storage tanks, pressure vessels, bridges, and buildings [12, 13].  

 

Figure 1-9: The iron-carbon phase diagram showing the distinction between steels and cast irons 

as a function of carbon content [15]. 
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Figure 1-10: Illustration of the microstructures of a hypoeutectoid steel (containing less than 

0.76 wt% C) as it is cooled from the austenite phase region to below the eutectoid temperature 

[15]. 

 

 

Figure 1-11: Optical images of the A516 Gr70 carbon steel used within this thesis showing grains 

of α-Fe (white) and pearlite (brown). 
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1.3.2. Iron Oxides 

Fe based alloys have become so prevalent in construction materials due to the large abundance 

of Fe, the relative ease of alloying and fabrication techniques available, and the extreme 

versatility of their mechanical and physical properties [13]. However, the main downfall of Fe 

based alloys is their low corrosion resistance. Upon contact with aqueous media, Fe will corrode 

to produce a variety of oxides and hydroxides. The phase formed will depend on a multitude of 

factors including the pH, temperature, oxidant availability, and the ion content of the exposure 

environment. The following sections describe the properties of the oxide and hydroxide phases 

found to form in the studies presented in this thesis.  

1.3.2.1. Magnetite (Fe3O4) 

Magnetite is a black phase with an inverse spinel structure of mixed oxidation state and formula 

FeIIFeIII
2O4, simplified to Fe3O4 [16, 17]. The inverse spinel consists of a cubic close-packed array 

of oxygen ions where the cations are located within the tetrahedral and octahedral interstices. 

The unit cell is FCC with 32 O2- ions leaving 16 octahedral and eight tetrahedral locations for the 

Fe cations. In Fe3O4 the FeIII ions occupy the tetrahedral locations along with half of the 

octahedral locations. The remaining eight octahedral locations are occupied by the FeII ions [18]. 

The resulting oxide is comprised of alternating layers of octahedra (FeII) and mixed 

octahedra/tetrahedra (FeIII).  The anti-parallel and unequal magnitude of the spins in these 

layers causes the ferrimagnetic properties of Fe3O4 [17]. In fact, Fe3O4 is the world’s oldest 

known magnetic material.  

1.3.2.2. Maghemite (γ-Fe2O3) 

Maghemite (γ-Fe2O3) is a defect spinel structure which differs from Fe3O4, and contains only the 

FeIII oxidation state. The increased charge is compensated for by the random introduction of 

cation vacancies into the octahedral sites. As such, γ-Fe2O3 is often referred to as an FeII 

deficient form of Fe3O4 [17, 18]. The overall formula, Fe2O3, is derived from a unit cell which 

contains 32 O2- ions (as in Fe3O4), 21.3 FeIII ions and 2.3 vacancies [17]. The γ-designation is used 

to distinguish the maghemite phase from that of hematite (α-Fe2O3). Like Fe3O4, γ-Fe2O3 is 

ferrimagnetic at room temperatures due to the location of FeIII in both tetrahedral and 

octahedral sites. γ-Fe2O3 has been shown to form via transformation from other iron oxide 

states. In such cases the crystal structure of the produced γ-Fe2O3 is generally the same as that 
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of the oxide from which it formed. For example, oxidation of Fe3O4 results in cubic or irregularly 

shaped particles while dehydroxylation of lepidocrocite (γ-FeOOH) will lead to the growth of 

thin and narrow crystals [17]. γ-Fe2O3 appears brown or brownish-red in colouring.   

1.3.2.3. Akaganeite (β-FeOOH) 

Akaganeite (β-FeOOH) is a polymorph of the iron oxyhydroxide grouping. It possesses a 

tetragonal unit cell structure with the O2- and OH- anions in a BCC array causing β-FeOOH to be 

less dense than either α- or γ-FeOOH [17, 19]. The FeIII cations occupy octahedral locations. The 

structure of β-FeOOH is composed of double chains of edge-shared octahedra which share 

corners with adjacent chains. This gives rise to a 3D structure, Figure 1-12, which contains 

tunnels confined by rows of octahedra [17, 19]. Occupation of these tunnels by chloride ions 

aids in their stabilization. Removal of the chloride ions has been shown to induce transformation 

to goethite (α-FeOOH) or α-Fe2O3 [17]. As such, akaganeite is only formed in chloride containing 

environments. β-FeOOH is paramagnetic at room temperature but becomes antiferromagnetic 

below 290 K (however this temperature has been known to change based on synthesis 

conditions) [17]. β-FeOOH is yellow-brown in appearance.  

 

Figure 1-12: Illustrative representation of the akaganeite tunnel structure. Triangular prisms 

represent the edge-sharing octahedra while the spheres are the Cl- ions which stabilize the 

tunnels [17]. 
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1.3.2.4. Lepidocrocite (γ-FeOOH) 

A second iron oxyhydroxide polymorph, lepidocrocite (γ-FeOOH), has an orthorhombic unit cell 

where the O2- and OH- anions are located in cubic close-packed (CCP) arrays and the FeIII ions are 

found within the octahedral interstitial spaces. While both β-FeOOH and γ-FeOOH are formed 

from double chain octahedra of Fe(O,OH)6, γ-FeOOH forms corrugated sheets of octahedra 

separated by empty octahedral locations rather than a tunnel structure like β-FeOOH [17]. On 

the macroscale, γ-FeOOH generally forms tabular crystal morphologies. However, slow crystal 

growth or high temperatures have been shown to lead to the formation of long and narrow 

crystal structures while rapid precipitation has led to thin, crumpled sheets [17]. γ-FeOOH is 

paramagnetic at room temperature and due to the layered structure antiferromagnetic below 

77 K, which is much lower than any other iron oxide or hydroxide [17]. γ-FeOOH is yellow to 

orange in appearance.  

1.3.2.5. Green Rusts 

Green rusts (GRs) are FeII-FeIII layered double-hydroxide compounds isostructural with 

pyroaurite (Mg6Fe2(OH)16CO3) and are made up of HCP sheets of FeII(OH)6 octahedra exhibiting 

an Fe(OH)2 structure. The substitution of FeIII into the layers gives the structure a positive charge 

which is then balanced by anions located between the octahedral sheets [17, 20-22]. The most 

common anions found within GR are chloride (GR1) and sulphate (GR2), although halogens, 

carbonate, perchlorate and nitrate have also been seen [17]. In the absence of other anions it 

has been suggested that OH- anions are found between the layer structures [23]. Due to the 

Fe(OH)2 structure incorporated into the layers, GRs exist in the form of hexagonal platelets, are 

blue-green in colour, and a common corrosion product associated with high concentrations of 

Fe2+ [17].  

1.3.2.6. Ferrihydrite (Fe5O7(OH)•4H2O) 

Synthetic and natural ferrihydrite are poorly ordered with two forms being reported, 2-line and 

6-line, due to their XRD pattern which give 2 or 6-8 reflections as the structural order increases 

[17]. Due to the poor ordering of ferrihydrite and the inability to separate the OH and adsorbed 

H2O within the structure, an exact formula is not yet agreed upon. Several groups report a 

structure of Fe5O7(OH)•4H2O for the bulk formula [24-26]. Music et al. [25] report a hexagonal 

crystal system for the ferrihydrite structure. Ferrihydrite is characterized by small crystal sizes 
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and low structural order. However, the higher ordered 6-line ferrihydrite has been shown to 

appear with a hexagonal structure [17]. The 2-line ferrihydrite easily transforms into either α-

FeOOH or α-Fe2O3 in water at room temperatures [27]. Ferrihydrite ranges from pale to bright 

yellow, orange or brown-yellow in colour [16]. However, it is generally less yellow in hue than β-

FeOOH, γ-FeOOH, and γ-Fe2O3 [17]. 

1.3.2.7. Chukanovite (Fe2(OH)2CO3) 

Chukanovite (Fe2(OH)2CO3) is an iron hydroxycarbonate from the rosasite-malachite mineral 

group. It is composed of edge-sharing Fe octahedra forming ribbons interlinked via corner-

shared locations to form corrugated octahedral layers. The carbonate groups are inserted within 

the structure which allows interlayer linking. Two octahedral Fe locations exist within the 

structure, one in which the Fe cation is coordinated to four oxygen atoms and two hydroxyl 

groups, and a second where the Fe is coordinated to four hydroxyl groups and two oxygen 

atoms. The former location is a larger octahedron with a higher level of distortion than the latter 

[28]. Chukanovite has been shown to grow as plate-like crystals during corrosion processes [29-

31]. Saheb et al. [32] have shown that Fe2(OH)2CO3 forms in carbonate rich anaerobic 

environments while work by Remazeilles et al. [33] showed its formation is dependent on the 

ratio of Fe2+ to both OH- and CO3
2- concentrations.  

1.4. CORROSION OF CARBON STEEL IN AQUEOUS SYSTEMS 

1.4.1. Corrosion under Disposal Conditions 

1.4.1.1. Evolution of the Waste Vault 

The corrosion behaviour of a steel container will be dependent on the environmental conditions 

to which it is exposed including: water saturation of the repository, temperature gradients, 

redox conditions, pore-water chemistry, microbial activity, mass transport, residual stress and 

external loads, and gas transport mechanism. Generally, the repository environment will evolve 

such that corrosion of the container will become less severe over time, with possible short term 

localized corrosion processes eventually giving way to uniform corrosion [6]. Initially, when the 

container temperature is high, the repository will contain insufficient moisture to support 

container corrosion. However, as the temperature at the container surface begins to decrease 

and the relative humidity increases, the deliquescence of salt deposits will allow corrosion to 
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begin. While the supply of H2O will initially be rate-limiting, the DGR will eventually become fully 

saturated and corrosion will progress in a continuous aqueous phase. It has been estimated that 

saturation of the DGR in a sedimentary clay environment could take 100’s to 1000’s of years due 

to the low permeability of the host rock [4, 6]. The low hydraulic conductivity of the 

sedimentary host rock may even push saturation times to tens of thousands of years [34].  

Initially, the DGR redox conditions will be oxidizing due to O2 trapped during the sealing process. 

Over time this O2 will be consumed by the corrosion of the container, microbial activity, and the 

oxidation of FeII and other oxidizable minerals. It is generally accepted that this aerobic phase 

will last 10’s of years to a maximum of 100-200 years [4, 6, 35]. Because the processes of water 

saturation and O2 consumption are occurring at the same time, the extent of steel corrosion will 

be dictated by the transition between these phases. Should the O2 be consumed at a rate faster 

than the establishment of saturated conditions, the corrosion of the steel should proceed in a 

uniform manner with relatively low corrosion rates. However, if saturation were to occur 

quickly, a period of saturated, aerobic conditions would be established. Under these conditions 

three exposure phases, based on the evolution of the repository temperature, saturation, and 

redox conditions, can be defined: 

1. An aerobic, unsaturated vapour phase 

2. An aerobic, saturated aqueous phase or an anaerobic, unsaturated vapour phase 

3. An anaerobic, saturated aqueous phase 

Figure 1-13 highlights the evolution of the DGR environment as a function of the saturation [6]. 

Additionally, the chemistry of the pore-water will evolve over time. Initially, the chemistry will 

be determined by the nature of the water used to saturate the bentonite back-fill material and 

the content of the mineral impurities of the clay. King [6] describes the evolution in pore-water 

chemistry as follows; 

1. Dissolution of soluble mineral impurities in the water used for wetting of the sealing 

materials.  

2. Ion exchange with the bentonite, resulting in the uptake of Ca2+ and the release of Na+ 

ions.  

3. Precipitation of the least soluble minerals as water is driven away from the container by 

the thermal gradient.  
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4. Buffering of the pore-water pH by calcite in the range 7-8. 

5. Dissolution of minerals as the sealing materials re-wet, starting with the most soluble 

species.  

6. Full saturation of the sealing materials. 

Over time, the pore-water will equilibrate with the surrounding groundwater which is expected 

to be highly saline at the proposed depth of a repository in the reference Michigan Basin host 

environment.  

 

 

Figure 1-13: Evolution of the environmental conditions expected within a DGR as a function of 

the stage of saturation. Overlaid colours represent the transition over time of the temperature 

from hot to cool [6]. 
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1.4.1.2. Steel Corrosion under Nuclear Waste Disposal Conditions 

In the initial aerobic, unsaturated conditions there will be insufficient moisture to support 

corrosion. Under the anaerobic conditions in phase 3 (section 1.4.1.1), the steel container will 

corrode indefinitely in contact with the groundwater, Figure 1-2. King and Kolar [34] have 

developed a model for the anaerobic corrosion of carbon steel used fuel containers in 

sedimentary host rock in order to predict long-term container lifetimes. Since the corrosion 

behaviour will depend on the establishment of saturated conditions in the repository, a 

reference time for full saturation of 10,000 years was assumed in the initial model calculations. 

Figure 1-14 shows the evolution of the corrosion rate divided into four distinct stages. Stage (I) 

corresponds to the initial anaerobic, unsaturated phase in which no significant corrosion is 

expected to occur. In stage (II) the initial corrosion rate will be high due to dissolution of the 

base metal. However, the rate will decrease as protective surface films (assumed to be Fe3O4) 

form on the surface. This inhibiting effect dominates until Stage (III) when a minimum porosity 

of the Fe3O4 film is achieved and the corrosion rate begins to increase due to the continued 

saturation of the area surrounding the container. Beyond 10,000 years when full saturation has 

been achieved the corrosion rate decreases slowly as the container begins to cool. After 100,000 

years, a steady state corrosion rate of   0̴.1 um/year is established. Sensitivity analyses for the 

time until full saturation were also conducted and are presented in Figure 1-15. For the shortest 

time to full saturation of 1,000 years the corrosion rate was seen to be highest due to the 

increased temperature of the fuel container when wetting first occurs. Conversely, for a 

saturation time of 100,000 years the corrosion rate is shown to decrease due to the lower 

temperatures of the fuel container upon wetting. From these results it was predicted that fuel 

container failure would occur after 8,200 years, 19,500 years, and 190,000 years for saturation 

times of 1,000 years, 10,000 years, and 100,000 years, respectively, for a corrosion allowance of 

2 cm.  

The rates predicted by the model by King and Kolar [34] are similar to those measured on 

archaeological artefacts which are often used as long-term analogues for the corrosion 

behaviour of carbon steel in repository conditions. 
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Figure 1-14: Corrosion rates as a function of time illustrating the evolution in the stages of 

corrosion for a reference time for full saturation of 10,000 years [34]. 

 

Figure 1-15: Effect of saturation time on the corrosion rate of the steel container [34].  
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1.4.2. The Role of Dissolved O2  

The anaerobic corrosion of carbon steel is thought to occur slowly due to the rate-limiting 

nature of the H2O reduction reaction on the steel surface 

 2𝐻2𝑂 + 2𝑒− → 𝐻2 + 2𝑂𝐻− (1-47) 

 

The primary corrosion product of anaerobic steel corrosion is widely accepted to be Fe(OH)2 

according to the reaction 1-48.  

 𝐹𝑒 + 2𝐻2𝑂 → 𝐹𝑒(𝑂𝐻)2 + 2𝐻+ + 2𝑒− (1-48) 

  

However, Fe(OH)2 is not considered to be either thermodynamically or kinetically stable [36], 

and as such will convert to other iron oxides/hydroxides depending on the redox conditions of 

the exposure environment. Figure 1-16 shows a general reaction scheme illustrating the 

differences in the corrosion products formed in anaerobic and slightly oxidizing conditions [36]. 

Under anaerobic conditions Fe(OH)2 generally coverts to Fe3O4 via the Schikorr reaction: 

 3𝐹𝑒(𝑂𝐻)2 → 𝐹𝑒3𝑂4 + 𝐻2𝑂 + 𝐻2 (1-49) 

 

Increases in temperature and pH (Figure 1-2) also favour the formation of Fe3O4. However, in 

the presence O2, FeIII oxides/oxyhydroxides become the favoured corrosion product species. 

Increased levels of O2 are seen to favour the formation of α-, β-, and γ-FeOOH while trace levels 

of O2 are seen to cause the formation of mixed FeII/FeIII green rusts (GRs). Under highly oxidizing 

conditions these species may oxidize further to α- or γ-Fe2O3. Mabuchi et al. [37] characterized 

the corrosion products formed over a range of [O2] over a 4-day period. They showed that with 

increasing [O2], the fraction of FeIII phases increased with γ-Fe2O3 and subsequently α-Fe2O3 

forming over a Fe3O4 base layer. Figure 1-16 also indicates that the FeIII containing FeOOH 

phases can be reduced to Fe3O4 under reducing conditions in the presence of excess Fe2+. 

Ishikawa et al. [38] showed that the ease of reduction of the FeOOH species to Fe3O4 was in the 

order β-FeOOH > γ-FeOOH >>> α-FeOOH. As such, it would appear that any FeOOH corrosion 

products that may be formed on the steel container due to the presence of trace levels of O2 will 

be reduced to Fe3O4 as conditions become progressively more anoxic with time [36].  
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Figure 1-16: General reaction scheme for iron corrosion product films formed in oxidizing and 

reducing conditions [36]. 

1.4.3. The Role of Groundwater Anions  

The groundwaters of the sedimentary clay DGR are expected to be highly saline and to contain 

anions such as HCO3
-/CO3

2- and SO4
2-. Some anion species, such as HCO3

-/CO3
2-, are known to 

increase the stability of FeII species while others, such as Cl-, are thought to stabilize FeIII species 

[36]. Consequently, the products formed on the steel container surface are expected to have a 

complex dependence on the dissolved [O2], pH, and anion content of the solution. 

1.4.3.1. The Effects of Chloride 

Several authors have previously shown that Cl- has the ability to accelerate the conversion of 

Fe2+ to Fe3+ in the presence of trace O2 [39-49]. Kurimura et al. [43] proposed that this oxidation 

was catalyzed by chelation and could be facilitated by a ligand bridging mechanism involving Cl- 

as observed for the oxidation of Cr2+ to Cr3+ [50]. Figure 1-16 shows that in the presence of trace 

O2, GRs can form as intermediate corrosion products. However, in addition to further oxidation 

to produce FeOOH species, GR is also metastable with respect to Fe3O4 at pH values greater 

than 5 (as expected for DGR groundwaters) making Fe3O4 a likely conversion product of GRs via 

dehydration and oxidation [51]. In the presence of high [Cl-], an excess of Cl- may be 

incorporated into the GR structure leading to further oxidation of FeII to FeIII
 in order for the 
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structure to remain neutral. This increase in the Cl- to Fe ratio is seen to cause the formation of 

γ-FeOOH [46, 51-55].  

Refait and Genin [46] studied the effect of Cl- to OH- ratios on the distribution of iron corrosion 

products. They observed that an increase in the [Cl-] of the exposure environment favoured the 

formation of γ-FeOOH at the expense of Fe3O4. Taylor [56] suggested that this effect was due to 

the preferential adsorption of Cl- over OH- at the Fe surface which would hinder the formation of 

Fe3O4. Therefore, it would appear that a competition exists between the formation of Fe3O4 at 

low [Cl-] and the formation of γ-FeOOH at high [Cl-], equation 1-50. 

 

 

(1-50) 

  

Furthermore, at extremely high [Cl-] the increased Cl- intercalation into a GR structure has been 

shown to cause preferential oxidation to β-FeOOH rather than γ-FeOOH [52]. This is not 

surprising as β-FeOOH is known to only form in Cl- containing environments. The Cl- anion is 

incorporated into the FeOOH structure which aids in stabilization of the octahedral tunnels, 

Figure 1-12.  

1.4.3.2. The Effects of Bicarbonate/Carbonate  

The presence of HCO3
-/CO3

2- has been shown to accelerate both the anodic and cathodic 

reactions involved in corrosion. Acceleration of the cathodic reaction is due to the increased 

availability of H+ from the dissociation of HCO3
- while the acceleration of the anodic reaction is 

due to stabilization of Fe2+ species through complexation to form species such as FeHCO3
+, 

Fe(HCO3)2, and Fe(CO3)2
2- [57-64]. Additionally, an increase in the HCO3

-/CO3
2- content of the 

exposure environment is shown to favour CO3
2- containing corrosion products [59]. Depending 

on the conditions, siderite (FeCO3) is known to form competitively with chukanovite 

(Fe2(OH)2CO3) [32, 65-67]. FeCO3 is known to be the major corrosion product formed on steel 

pipelines exposed to groundwater saturated soils [68]. Fe2(OH)2CO3 has been found as a 

corrosion product of steel in oxygen-poor clay environments such as those expected within the 
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DGR [31, 32, 59, 65, 69-75]. Previous authors have shown that high [Fe2+], moderate [HCO3
-

/CO3
2-], and slightly alkaline pH will promote the formation of Fe2(OH)2CO3 over FeCO3 [31, 33, 

59, 67, 71, 73, 76]. Observation of the Pourbaix diagram for Fe in HCO3
-/CO3

2- containing 

environments shows that Fe2(OH)2CO3 is favoured in slightly alkaline conditions but that it is 

metastable with respect to FeCO3, Figure 1-17. Consequently, it is possible that over extended 

periods of time Fe2(OH)2CO3 may thermodynamically convert to FeCO3. This is consistent with 

the observation of inner Fe2(OH)2CO3 layers and outer FeCO3 layers found on archaeological 

artefacts exposed to anoxic carbonated groundwaters [32, 33, 59, 65, 67, 77].  

 

 

Figure 1-17: Pourbaix diagram of iron in carbonate containing aqueous media at 25°C for 

equilibria involving Fe2(OH)2CO3 (dotted lines) and FeCO3 (solid lines) [67]. 
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1.4.3.3. The Effects of Sulphate 

Previous studies of the effects of SO4
2- on the corrosion of carbon steel suggest that SO4

2- is an 

aggressive anion towards steel corrosion in anoxic and alkaline environments [59, 78-85]. Zhu et 

al. [85] suggest that this is due to the loss of protective oxides due to an accelerated dissolution 

caused by replacement of adsorbed OH- ions by SO4
2- leading to a situation in which a small 

anode is coupled to a large cathode. Others have attributed its aggressiveness to an increase in 

solution conductivity [86] or to the formation of complexes with iron such as those observed in 

the case of HCO3
-/CO3

2- [79]. Furthermore, several studies have shown that carbon steel is 

susceptible to localized pitting events in the presence of SO4
2- [81, 84, 85]. However, these 

studies were performed in solutions containing HCO3
- with only little Cl- which may have 

changed the behaviour of the steel in comparison to if it had been exposed to SO4
2- only.  

1.5. THESIS OBJECTIVES  

The overall goal of this thesis was to investigate the corrosion behaviour of A516 Gr70 carbon 

steel in a variety of solutions containing the species anticipated in the groundwater of a 

sedimentary clay DGR. In particular, the effects of groundwater anions such as Cl-, HCO3
-/CO3

2-, 

and SO4
2- on the corrosion behaviour and corrosion product compositions and morphologies 

were studied. In addition, the effects of trace levels of O2 were studied in order to investigate 

how corrosion might progress if saturated conditions are achieved before all the available O2 has 

been consumed. The overall thesis objectives are: 

 To determine whether corrosion on the inside of a failed container is influenced by 

water radiolysis products produced by the radioactive decay processes occurring in the 

fuel waste form.  

 To study the effects of HCO3
-/CO3

2- and SO4
2- in highly concentrated Cl- solutions on the 

corrosion behaviour of A516 Gr70 carbon steel under anoxic and near anoxic conditions. 

 To identify the corrosion products formed on the steel surface after exposure to 

solutions with different compositions.   

 To develop a long term understanding of the evolution of the corrosion behaviour of 

A516 Gr70 carbon steel in highly concentrated Cl- solutions under conditions expected 

in sedimentary clay groundwaters.  
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1.6. THESIS SUMMARY 

This thesis describes the application of electrochemical and surface analysis techniques to 

determine the corrosion behaviour of carbon steel as applied to nuclear waste storage 

containers.  

Electrochemical methods used included the measurement of corrosion potentials (ECORR) over 

periods ranging from 14 to 60 days, linear polarization resistance (LPR) measurements to 

provide insight into the steel corrosion rates, and electrochemical impedance spectroscopy (EIS) 

to characterize the corroding interface. Surface analytical techniques were used to characterize 

the composition and morphology of the corrosion product films. Raman spectroscopy and 

infrared spectroscopy (FTIR) were used to identify the corrosion product deposits formed during 

exposure to the various environments. Scanning electron microscopy (SEM) was used to 

determine the morphology of the surface films while focused ion beam (FIB) milling was used to 

cross-section the corrosion films and determine the influence of corrosion on the steel surface. 

Energy dispersive X-ray (EDX) spectroscopy was used to determine the elemental composition of 

the corrosion products. 

Chapter 2 briefly outlines the electrochemical and surface analytical techniques used as well as 

the experimental designs.  

In Chapter 3 the influence of H2O2 on the corrosion of carbon steel was investigated under 

deaerated conditions, when traces of dissolved O2 could be present, and under anaerobic 

conditions, when the [O2] would be expected to be at the ppb level. The goal of this chapter was 

to determine whether or not H2 and Fe2+ produced from steel corrosion will be continuously 

produced inside a failed container and available to scavenge radiolytically produced H2O2 

thereby suppressing fuel corrosion.  

In Chapter 4 the effects of Cl- along with HCO3
-/CO3

2- and SO4
2- in highly concentrated Cl- 

solutions were investigated under deaerated conditions when trace levels of O2 are present. A 

series of ECORR and RP measurements were performed in solutions containing increasing 

concentrations of Cl- as well as solutions containing 5.0 M Cl- with increasing concentrations of 

HCO3
-/CO3

2- or SO4
2-. This chapter describes the possible consequences should the saturation of 

the DGR environment occur before all of the initial O2 is consumed.  
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In Chapters 5 and 6 the effects of [Cl-] and HCO3
-/CO3

2- on the corrosion behaviour of carbon 

steel, specifically the corrosion product identity and morphology, under totally anaerobic 

conditions was investigated. Four exposure solutions were developed: (i) a low [Cl-]; (ii) a high 

[Cl-]; (iii) a high [Cl-] buffered by HCO3
-/CO3

2-; (iv) a simulated sedimentary clay groundwater. 

Chapter 5 focused on the electrochemical behaviour of carbon steel exposed to each of the four 

exposure solutions by ECORR and RP measurements over extended 60 day periods. This chapter 

describes the effect of groundwater composition on the anodic and cathodic reaction kinetics.  

Chapter 6 focused on the evolution in corrosion product identities and morphologies over long-

term periods of exposure (up to 30 months). A series of 16 steel coupons were exposed to each 

of the four exposure solutions and removed at periodic intervals to track the evolution in the 

corrosion products. A combination of surface analysis techniques were used to identify the 

corrosion products and observe their morphologies.  

Chapter 7 summarizes the results and conclusions of the current project as applied to the use of 

carbon steel containers for the long-term disposal of spent Canadian nuclear fuel in sedimentary 

clay environments.  
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Chapter 2 

Experimental Techniques and Details 

2.1. EXPERIMENTAL DESIGN 

2.1.1. Electrochemical Cell and Equipment 

All electrochemical experiments were conducted in a standard three-electrode, three-

compartment glass cell. The cell was comprised of a main central chamber separated by glass 

frits from two side arms. The reference electrode was a commercial saturated calomel reference 

electrode (SCE, Fisher Scientific) placed in one side arm of the cell and connected to the main 

chamber by a Luggin capillary, the tip of which was placed just below the surface of the working 

electrode. All potentials throughout this thesis are reported on the SCE scale (+0.241 V vs. SHE). 

The counter electrode was a Pt sheet, spot welded to a Pt wire and housed in the second side 

arm of the cell. The cell was fitted with a glass gas dispersion tube with a fritted end used to 

deaerate the solution by sparging with Ar gas.   

In bench-top experiments, the cell was housed within a grounded Faraday cage to minimize 

interference from external noise. For anaerobic experiments, the cell was placed in an anaerobic 

chamber to avoid the influx of atmospheric O2. Experiments performed on the bench-top were 

run with a Solartron 1480 multistat running CorrWareTM software to control applied potentials 

and to record current responses. For experiments performed within the anaerobic chamber, a 

Solartron Analytical Modulab running Modulab XM ECS software was used.  

2.1.2. A516 Gr70 Carbon Steel Working Electrode 

All electrodes were fabricated from A516 Gr70 carbon steel (0.23 C; 1.11 Mn; 0.07 P; 0.03 S; 

0.26 Si; 0.01 Cu; 0.01 Ni; 0.02 Cr; 0.004 Mo; 0.036 Al; 0.019 V; 0.003 O [wt.%], balance Fe). The 

steel coupons were first prepared by ultrasonication in ethanol and type 1 water to remove 

adhered contaminants from the steel surface. Once cleaned, coupons were mounted in a high-

performance epoxy resin (Hysol EE 4190) with a single exposed flat face (0.7854 cm2). The 

connection between the electrode and the stainless steel rod used to connect the electrode to 

external measuring circuits was covered, first with laboratory film (Parafilm), and then with 

several layers of Teflon tape to prevent exposure of the connection to the electrolyte. Prior to 

each experiment, the electrode was wet polished with 180, 600, 800, 1000, and 1200 grit SiC 
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paper and rinsed with type 1 water before being placed directly into solution or into the 

anaerobic chamber.  

2.1.3. Solution Preparation 

All solutions were prepared using Type 1 water with a resistance of 18.2 MΩ.cm, purified using a 

Thermo Scientific Barnstead Nanopure Model 7143 filtration system to remove organic and 

inorganic impurities. Specific details of the composition of the electrolyte solutions used are 

provided in the individual experimental sections found in subsequent chapters. A Thermo 

Scientific Orion Star A211 pH meter was used to measure the pH before and after 

electrochemical measurements, with either a Thermo Scientific Orion 8104BNUWP or 

9156DJWP pH electrode for the anaerobic chamber and benchtop measurements, respectively. 

For experiments performed on the bench-top, all solutions were deaerated at a high flow rate 

with ultra-high purity (UHP) Ar (Praxair) for at least 60 minutes prior to experimentation. Ar 

sparging was continued at a decreased flow rate throughout the duration of each experiment. 

For anaerobic experiments, the Type 1 water was sparged with UHP Ar at a high flow rate for at 

least 90 minutes prior to being sealed and transferred into the anaerobic chamber. The flask 

was sealed with the entire volume filled with the Ar sparged water to avoid any trapped air. 

Preparation of the solution was completed within the anaerobic chamber and no additional Ar 

sparging was necessary.  

2.1.4. Anaerobic Exposure Experiments 

A series of four exposure environments were examined to determine the effects of simulated 

groundwater, various chloride concentrations, and pH buffering on the corrosion behaviour of 

A516 Gr70 carbon steel. For each exposure environment, a total of 16 carbon steel coupons 

were prepared with dimensions of 1 cm x 1 cm x 0.5 cm. Each face of the steel coupon was 

polished with 180, 600, 800, 1000, and 1200 grit SiC paper and rinsed with type 1 water before 

being left exposed to air for one week to mimic the natural oxides which would form on the 

steel waste container surface before emplacement in a repository. Samples were then placed 

within sample slots on a specially designed Teflon sample holder housed within a 2 L beaker, 

Figure 2-1. All solutions were prepared as outlined for anaerobic experiments in section 2.1.3. 

The pH of the simulated groundwater and chloride solutions was set to 6.3 ± 0.5 using a Thermo 

Scientific Orion 8104BNUWP pH electrode connected to a Thermo Scientific Orion Star A211 pH 
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meter while for the buffered chloride solution the natural pH was maintained. Coupons were 

immersed in each of the exposure solutions and removed for analysis after exposure periods 

from two days to 30 months. Samples were analysed using a combination of Raman 

spectroscopy, infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy 

dispersive X-ray (EDX) spectroscopy, and focused ion beam milling (FIB).  

 

Figure 2-1: (a) Magnified image of carbon steel coupons emplaced in the sample slots of a Teflon 

holder; (b) image of the Teflon sample holder placed in a modified 2 L beaker. 

2.2. ELECTROCHEMICAL TECHNIQUES 

2.2.1. Corrosion Potential (ECORR) 

The corrosion potential (ECORR) is the potential measured when the oxidation of a material is 

coupled, in the absence of an applied potential, to a supporting reduction reaction. Figure 2-2 

shows the Butler-Volmer relationships for the two electrochemical reactions involved in a 

corrosion reaction, in the illustrated case, the corrosion of Fe. At the equilibrium potential for 

the Fe dissolution/deposition reaction (Ee 
Fe/Fe2+) both the forward and reverse reactions are 

occurring at the same rate (i.e. the system is at a reversible equilibrium):  

 𝐹𝑒 ⇆ 𝐹𝑒2+ + 2𝑒− (2-51) 

 

A similar reversible equilibrium is established at the equilibrium potential of the water 

reduction/H2 oxidation reaction (𝐸𝐻2𝑂/𝐻2

𝑒 ): 

 2𝐻2𝑂 + 2𝑒− ⇆ 𝐻2 + 2𝑂𝐻− (2-52) 
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For the corrosion of the Fe metal to occur, the anodic dissolution of Fe must combine with the 

cathodic reduction of water yielding the overall corrosion reaction: 

 𝐹𝑒 + 2𝐻2𝑂 → 𝐹𝑒2+ + 𝐻2 + 2𝑂𝐻− (2-53) 

 

This coupling can only occur when the anodic and cathodic currents for the two half reactions 

are equal. Therefore, there is only a single potential at which these half reactions can couple. 

This potential is the corrosion potential (ECORR). Each of the reactions has polarized the other 

away from its equilibrium potential by an amount which is dependent on the slope of the 

respective current-potential relationships.  

 

 

Figure 2-2: Current-potential (Butler-Volmer) relationships for the Fe dissolution/deposition and 

water reduction/H2 oxidation reactions illustrating their coupling at the ECORR. 
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2.2.2. Linear Polarization Resistance (LPR) Measurements 

2.2.2.1. Basic Principles of LPR 

Linear polarization resistance (LPR) is an electrochemical technique which measures the 

interfacial polarization resistance (RP). Figure 2-3 illustrates that, for small overpotentials 

(η=ECORR ± Eapplied), the slope of the current-potential relationship for a corrosion process is 

approximately linear and can be expressed by Ohm’s Law: 

 ∆𝐸

∆𝐼
= 𝑅𝑃 (2-54) 

 

where RP represents the polarization resistance which is the ratio of the applied potential to the 

corresponding current response. For small overpotentials from ECORR, the measured current can 

be described by: 

 
𝑖 = 𝑖𝐶𝑂𝑅𝑅 [𝑒

2.303(𝐸−𝐸𝐶𝑂𝑅𝑅)
𝛽𝑎 − 𝑒

2.303(𝐸−𝐸𝐶𝑂𝑅𝑅)
𝛽𝑐 ] (2-55) 

 

where icorr is the corrosion current and βa and βc are the Tafel slopes of the anodic and cathodic 

reactions.  

Approximating the exponential terms with the first two terms of a power expansion series and 

simplifying yields: 

 
𝑖 = 𝑖𝐶𝑂𝑅𝑅 [(1 +

2.303(𝐸 − 𝐸𝐶𝑂𝑅𝑅)

𝛽𝑎
) − (1 −

2.303(𝐸 − 𝐸𝐶𝑂𝑅𝑅)

𝛽𝑐
)] (2-56) 

 

 
𝑖 = 𝑖𝐶𝑂𝑅𝑅 [(1 +

2.303∆𝐸

𝛽𝑎
) − (1 −

2.303∆𝐸

𝛽𝑐
)] (2-57) 

 
𝛽𝑎𝛽𝑐 ∗

𝑖

𝑖𝐶𝑂𝑅𝑅
= [

2.303∆𝐸

𝛽𝑎
+

2.303∆𝐸

𝛽𝑐
] ∗ 𝛽𝑎𝛽𝑐 (2-58) 

 𝛽𝑎𝛽𝑐𝑖

𝑖𝐶𝑂𝑅𝑅
= 2.303∆𝐸𝛽𝑐 + 2.303∆𝐸𝛽𝑎 (2-59) 

 

which can be rearranged to yield: 
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 ∆𝐸

𝑖
= 𝑅𝑃 =

𝛽𝑎𝛽𝑐

2.303𝑖𝐶𝑂𝑅𝑅(𝛽𝑎 + 𝛽𝑐)
 (2-60) 

 

As shown in equation 2-60, known as the Stern-Geary equation, the linear slope of the 

polarization curve yields the RP which is shown to be inversely proportional to iCORR and 

subsequently the corrosion rate [1]. If the values of the Tafel constants are known, the RP value 

can also be used to calculate the value of the corrosion current density (𝑖𝐶𝑂𝑅𝑅) which can then 

be related to the corrosion rate of the system.  

For this technique to be valid, we assume that corrosion damage is uniform, there is a single 

anodic and cathodic reaction, the Tafel constants are known, the resistance of the solution is 

negligible and the value of ECORR is stable [2].  

 

 

Figure 2-3: Current-potential relationship for a corrosion process demonstrating the linearization 

for small overpotentials from ECORR used in polarization resistance measurements. 

 



www.manaraa.com

43 
 

 

2.2.2.2. LPR Experimental Details  

LPR measurements were performed between ECORR measurements at various intervals (i.e. every 

6 or 8 hours) during long term corrosion experiments. LPR measurements were executed by 

scanning the potential ± 10 mV from ECORR at a scan rate of 0.1667 mV/s. The RP values were 

then determined from the linear slope of the potential-current relationship.  

2.2.3. Cyclic Voltammetry 

2.2.3.1. Basic Principles of Cyclic Voltammetry 

Voltammetry is an electrochemical method which follows the current response as a function of 

a potential applied to the working electrode [3]. Cyclic voltammetry is a potentiodynamic 

technique which employs a triangular potential waveform, Figure 2-4, to determine the 

electrochemical reactivity of a system [4]. To generate the cyclic voltammogram (CV), a linear 

potential ramp is applied between t0 and t1, the switching potential. The ramp is then reversed 

to bring the potential back to the initial value at t2 [3]. The potential range scanned should cover 

the standard or equilibrium potential for the reaction of interest (i.e. the Ee for the dissolution of 

Fe in the present case). Depending on the rate of the reaction under study, a suitable scan rate 

is chosen.  

For a reversible reaction involving soluble species, such as the one illustrated in Figure 2-5, the 

chemical species under study experiences an anodic oxidation on the forward scan  and a 

cathodic reduction on the reverse scan (with the direction of the scan indicated by the red 

arrows). The peak current values are proportional to the concentrations of the species being 

oxidized and reduced and the separation between the potentials at which the peaks occur can 

be calculated theoretically.  

For an irreversible reaction, peaks become broader and more separated. If the reaction is totally 

irreversible, the peak on the return cathodic scan is no longer seen. For reactions involving the 

oxidation and dissolution of a metal, more complex curves are observed due to the formation of 

oxide films and deposits. Depending on the properties of the films and deposits formed no 

current may be observed on the reverse scan [3].  
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Figure 2-4: Potential-time profile used to generate a CV in which the potential is increased from 

t0 to the switching potential at t1 and then back to the initial potential at t2. 

 

Figure 2-5: Schematic of a typical CV recorded for a reversible electrochemical reaction involving 

soluble species. 
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2.2.3.2. Cyclic Voltammetry Experimental Details 

Prior to each CV the electrode was cathodically cleaned at -1.3 V for two minutes to reduce any 

air formed oxide followed by three minutes at -1.1 V to allow H2 bubbles, formed by the 

reduction of water at -1.3 V, to detach from the surface. The electrode potential was then 

scanned from -1.1 V to a pre-determined anodic limit and back again. In some experiments 

several scans were performed to various anodic potential limits. The potential range chosen 

depended on the specific reactions being investigated. In the case of experiments performed in 

this work the anodic limit was chosen to capture passive film formation and breakdown 

processes. Measurements for benchtop experiments were performed at a scan rate of 5 mV/s 

with a current value recorded either every mV or half mV. Measurements in the anaerobic 

chamber were performed at a scan rate of 1 mV/s with a current recorded every mV.  

2.2.4. Electrochemical Impedance Spectroscopy (EIS) 

2.2.4.1. Basic Principles of EIS 

Electrochemical impedance spectroscopy (EIS) is used in corrosion science to determine both 

interfacial and materials parameters related to the corrosion processes occurring and to 

determine the properties of oxide films and corrosion product deposits which may be formed [2, 

5]. As with any other spectroscopic technique, EIS is based upon an observed response to an 

applied excitation to the system under study. EIS involves a potential excitation applied to the 

working electrode in the form of a sine wave followed by the measurement of the ensuing 

sinusoidal current response, Figure 2-6. From the response the impedance can be obtained, and 

parameters such as resistances and capacitances may be calculated. Figure 2-7 shows a Nyquist 

plot which can be used to determine the values of the system resistances for the film (Rfilm) and 

solution (RS). Bode plots, Figure 2-8, show the relationship between the resistance and 

capacitance values and frequency. In order to interpret their significance, EIS spectra are 

commonly interpreted in terms of an electrical equivalent circuit used to represent the 

properties of the interface. Figure 2-9 shows an example of an equivalent circuit for the 

impedance of a corrosion film controlled by the transfer of charge carriers across the film and 

includes the film capacitance (Cfilm) and resistance (Rfilm). 
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2.2.4.2. EIS Experimental Details 

EIS measurements were performed every 48 hours following a series of ECORR and RP 

measurements in simulated groundwater solutions under anaerobic conditions. EIS experiments 

were conducted using a Solartron Analytical Modulab potentiostat/FRA running Modulab XM 

ECS software. A sinusoidal potential perturbation of ±10 mV was applied around ECORR. The 

corresponding current response was measured over a frequency range from 105 Hz to 10-3 Hz 

with 11 data points recorded per decade. Kramers-Kronig transformations were applied to all 

EIS data to confirm their validity.  

 

Figure 2-6: Illustrative representation of the sinusoidal potential excitation used in EIS and the 

corresponding sinusoidal current response. The phase shift is given by θ. 

 

Figure 2-7: Graphical representation of a typical Nyquist plot. 



www.manaraa.com

47 
 

 

 

Figure 2-8: Graphical representation of Bode plots of log |Z| and θ against the log of the 

frequency. 

 

 

Figure 2-9: Equivalent circuit representative of a passive metal covered with an oxide film. 

 

 



www.manaraa.com

48 
 

 

2.3. SURFACE ANALYTICAL TECHNIQUES 

2.3.1. Scanning Electron Microscopy (SEM) 

2.3.1.1. Basic Principles of SEM 

Information on the physical nature of a sample surface can be obtained through optical 

microscopy. However, the resolution is limited by diffraction effects to roughly the wavelength 

of the white light being used. Scanning electron microscopy (SEM) can be used to obtain more 

detailed image resolution. This enhanced resolution is achieved due to the much shorter 

wavelength of the electron which minimizes diffraction effects. A standard SEM instrumental 

arrangement is shown in Figure 2-10 [6]. A beam of electrons (200 eV – 30 keV) is thermionically 

produced from an electron gun, usually fitted with a W filament. This beam of electrons is then 

accelerated through a series of condenser and objective lenses which act to reduce the 

diameter of the beam. It is the objective lens that largely determines the special resolution of 

the instrument which can never be better than the incident beam diameter. Typical SEM beam 

diameters are on the order of 10 nm but the use of a field emission source can reduce the 

diameter to 1 nm [7]. The SEM micrograph is created by scanning the electron beam 

horizontally along the sample surface in perpendicular directions. Just above the objective lens 

are two deflection coils connected in series which generate a magnetic field, supplied by a 

sawtooth-wave generator operating at a line frequency in the y-direction which deflects the 

electron beam in the x-direction. A second sawtooth-wave generator generates the slower y-

scan. The overall procedure is known as rastering and leads to sequential beam coverage over a 

rectangular area of the sample. The size of the rastered area of the sample surface is what gives 

rise to the magnification of the SEM rather than the strength of the objective lens as in light 

microscopy [7].  

The electron beam penetrates the sample surface producing secondary electrons (SE), 

backscattered electrons (BSE), X-rays and Auger electrons. SEs are the most commonly used to 

produce SEM images and are generated from inelastic collisions between the primary electrons 

and the electrons in the K-orbital of an atom. Inelastic scattering reduces the kinetic energy of 

the primary electrons by repeated random scattering or absorption. The depth at which the 

electrons come to rest within the solid is known as the penetration depth and the volume of the 
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sample containing most of these scattered electrons is the interaction volume. Figure 2-11 

illustrates the interaction volume based on incident beam energy [7].  

Because most SEs start with relatively low energies, the average distance they tend to travel 

within a solid is very small. As such, many SEs do not have enough energy to escape the solid. 

Those which do escape the solid typically come from very shallow depths, known as the escape 

depth, causing the technique to be surface sensitive. Features which are at higher positions on 

the sample will appear brighter in the SE image due to the increased probability of the SEs 

reaching the detector, leading to the topographical contrast of the image [7].  

The most common SE detector is the Everhart-Thornley detector which uses a positive bias to 

attract the SEs which are then accelerated toward a scintillator, converting the electrons to 

photons before they pass through a photomultiplier tube which amplifies the signal.  

 

Figure 2-10: General schematic for an SEM instrumental arrangement [6].  
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Figure 2-11: Excitation volume caused by an incident electron beam showing the regions of 

signal generation, and the effects of increasing the incident energy (E0) and atomic number (Z). 

 

2.3.1.2. SEM Experimental Details 

SEM was used to image the electrode surface to determine the morphology of the corrosion 

films formed after electrochemical or corrosion experiments. Depending on the experiment, 

either a Hitachi S-4500 (Hitachi, Japan) Field Emission SEM or LEO (Zeiss) 1540XB FIB/SEM was 

used. Unmounted samples were adhered to the sample stage either via a small vice-grip (LEO 

1540XB) or by carbon stickers (Hitatchi S-4500). Mounted samples were electrically connected 

to the stage by Cu tape which was used to cover the epoxy resin and reduce charging. Areas of 

interest on the sample surface were imaged at accelerating voltages of 1 keV (LEO 1540XB) or 5 

keV (Hitatchi S-4500). SE mode was used to image all samples at various magnifications (250 – 

25,000X). SEM images presented within this thesis are representative of the entirety of the 

sample surface.  
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2.3.2. Energy Dispersive X-Ray (EDX) Spectroscopy  

2.3.2.1. Basic Principles of EDX 

In addition to the SEs used in SEM to image a sample surface, characteristic X-rays are generated 

from deeper within the interaction volume produced by the incident beam, Figure 2-11. These 

X-rays are analyzed using Energy Dispersive X-ray (EDX) Spectroscopy and yield a quantitative 

elemental analysis of a sample. A small fraction of the electrons from the incident beam in the 

SEM can in-elastically excite electrons within the inner shell of atoms on the sample surface. 

Some of the kinetic energy of the incident electron is transferred to this inner-shell (usually the 

K-shell) electron causing it to be ejected. The vacancy left in the inner shell can then be filled by 

an outer shell electron, Figure 2-12. The excess energy due to this de-excitation process is 

released in the form of a photon whose energy is given by the difference in binding energies 

between the upper and lower orbital levels.  Because the x-ray photon is characteristic of the 

binding energy differences of the orbital levels and of the atomic structure of the element, the 

elemental composition of the sample can be measured. This element specificity is related to the 

atomic number (Z) of the element as shown in Figure 2-11. As the atomic number is increased, 

the interaction volume of the electrons within the sample is subsequently decreased. Repeated 

scanning of a selected area on the sample can generate an EDX map of the elemental locations 

and, based on the signal intensity, quantitative measurements of the elemental composition are 

possible [7].  

Spectrum generation requires the separation of the x-ray signal either by energy (EDX) or 

wavelength (WDX). In EDX the x-ray emission signal is sorted via an energy dispersive x-ray 

detector. There are several advantages to distinguishing via x-ray energies over wavelengths. 

Firstly, the speed of data acquisition is much greater since a wide range of energies can be 

measured simultaneously. Second, since the detector can be placed very close to the specimen, 

a large percentage of the emitted x-rays can be analyzed whereas a wavelength dispersive 

detector requires excess space for crystal movement. Finally, the cost of an EDX detector is 

much lower than that of a WDX detector.  The EDX detector is equipped with a protective Be, or 

more recently diamond or boron nitride, window and a semiconductor diode fabricated from a 

Si(Li) crystal [7].   
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Figure 2-12: Schematic showing the creation of an electron hole due to an incident electron 

beam and the subsequent X-Ray photon released due to an outer shell electron filling the inner 

shell hole. 

2.3.2.2. EDX Experimental Details 

EDX elemental maps of sample surfaces and cross-sections were produced using a LEO (Zeiss) 

1540XB FIB/SEM. All electrodes were mounted on the SEM stage as described in the SEM 

analysis. The sample was tilted to an angle of 54° to facilitate x-ray collection by the detector. A 

beam voltage of 10 keV was generally used for x-ray excitation of the sample surface.  

2.3.3. Focused Ion Beam (FIB) Milling  

2.3.3.1. Basic Principles of FIB 

Focused Ion Beam (FIB) instruments are complimentary to SEM systems and in addition to 

imaging are useful in milling, deposition, and implantation. The use of relatively heavy ions in 

the beam allows for fine milling of the sample surface to produce a cross-sectional view. The 

most common ion used in modern FIB instruments is Ga+ generated through the use of a liquid-

metal ion source (LMIS). Ga is an ideal candidate since its mass is heavy enough for milling 

without causing immediate surface damage, its low melting point allows for liquid phase storage 

during operation, its low volatility at the melting point conserves the supply of metal, and its low 
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vapour pressure allows it to be used in elemental form. Additionally, Ga is easily distinguishable 

from other elements and will therefore not interfere with elemental analyses [8].  

Ga atoms are heated to a molten metal state where they flow to the tip of a W needle which is 

placed just above an extractor. The extractor is held at a higher voltage than the source which 

produces a large electric field and ionizes the liquid. The Ga+ ions are then ejected and 

accelerated towards the sample surface through a series of electrostatic lenses and a beam-

limiting aperture. The aperture acts to mitigate the beam current reaching the sample and thus 

controls the milling rate and image quality. Upon contact with the sample surface the Ga+ ions 

can induce elastic collisions with surface atoms, leading to the ejection of neutral atoms or 

secondary ions from the outer layers of the material. This removal of surface species can 

penetrate into the sample, producing a large trench which can then be imaged in cross-section. 

Imaging in FIB systems, similar to SEM, can be achieved through the detection of SEs which are 

generated either through inelastic collisions from the incident beam or by recoil atoms from 

prior collisions. However, most dual beam FIB systems employ a secondary field emission 

electron beam for imaging purposes, as illustrated in Figure 2-13 [9].  

 

 

Figure 2-13: General schematic of a dual-beam FIB and SEM arrangement [10]. 
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2.3.3.2. FIB Experimental Details 

FIB was used in this research to cross-section samples to expose the oxide/metal interface which 

can be used to investigate oxide film/deposit thickness and morphology as well as to estimate 

the corrosion damage based on penetration depths into the base metal. FIB cuts were 

performed using a LEO (Zeiss) 1540XB FIB/SEM running in FIB mode with a gallium ion source. 

Cuts were performed with the sample tilted to an angle of 54°. Initial cutting was done at high 

beam currents (30 nA) to remove a trench of material ahead of the area of interest. Once close 

to the desired point of cross-section the beam was reduced to a current value of 1 nA to ensure 

a smooth polished surface for imaging. Sample preparations were performed as in the case of 

SEM analysis.  

2.3.4. Vibrational Spectroscopies 

In this study, both Raman spectroscopy and Infrared (IR) spectroscopy were used to identify 

corrosion product deposits.   

2.3.4.1. Basic Principles of Raman Spectroscopy 

Figure 2-14 shows a schematic of a Raman microscope, built from a standard optical 

microscope, by adding an excitation laser, a monochromator, and a sensitive detector such as a 

charge-coupled device (CCD) or photomultiplier tube (PMT). 

Raman spectroscopy irradiates a sample with a monochromatic incident laser beam in either the 

visible, near infrared, or the ultra-violet regions of the spectrum while observing the scattered 

light in a perpendicular orientation. The excitation of a molecule involves a virtual state as the 

excitation wavelength is sufficiently far from the nearest absorption band [4]. The resultant 

scattered light is of two types: Rayleigh scattering and Raman scattering. While the Rayleigh 

scattering signal is strong, it represents an oscillating dipole radiating at the same frequency as 

the incident beam and does not provide significant information about the structure of the 

molecular states. Raman scattering (ca. 10-5 % of the incident beam intensity) [11] occurs when 

the scattered light is shifted in energy from the incident beam. Raman shifted photons of lower 

energy than the incident beam give rise to Stokes lines while shifted photons of higher energy 

give rise to anti-Stokes lines, Figure 2-15.   
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From the Maxwell-Boltzmann distribution law, the population of molecules occupying the ν = 0 

state in Figure 2-15 is much larger than the population in the ν = 1 state. As such, the Stokes 

lines will be of greater intensity than the anti-Stokes lines under the same conditions making it 

customary to measure only the Stokes side of the spectrum [11]. A plot of the intensity of the 

shifted light versus the Raman shift can be used to identify chemical species by comparison to 

reference spectra available in the literature or through the use of digital databases. Figure 2-16 

illustrates typical experimental and reference Raman spectra for magnetite (Fe3O4). 

For the vibrational mode of a molecule to be Raman active it must experience a change in 

polarizability during the vibration. When placed in an electric field molecules suffer distortions 

due to the attraction of the positively charged nucleus towards the negative pole of the field 

and the attraction of the electrons to the positive pole. Charge separation within the molecule 

produces an induced dipole moment. However, in molecules the induced dipole moment and 

the electric field are vectors in the x, y, and z directions. This can be represented as a matrix 

known as the polarizability tensor: 

 

[

𝑃𝑥

𝑃𝑦

𝑃𝑧

] = [

𝛼𝑥𝑥 𝛼𝑥𝑦 𝛼𝑥𝑧

𝛼𝑦𝑥 𝛼𝑦𝑦 𝛼𝑦𝑧

𝛼𝑧𝑥 𝛼𝑧𝑦 𝛼𝑧𝑧

] [

𝐸𝑥

𝐸𝑦

𝐸𝑧

] (2-61) 

 

where P is the dipole moment, α is the polarizability, and E is the field strength of the radiation. 

If one of the components of the polarizability tensor is changed during the vibration, the 

vibration is considered to the Raman active. For molecules with a center of symmetry the 

mutual exclusion principle applies in which symmetric vibrations are Raman active while anti-

symmetric vibrations are IR active [11].  
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Figure 2-14: Schematic of a Renishaw Raman microscope system [12, 13]. 

 

 

Figure 2-15: Energy level diagram showing the electron transitions for Rayleigh scattering and 

Stokes and Anti-Stokes Raman shifts. E1 and E2 represent the first and second discrete energy 

levels. The ground state is given by ν=0 and ν=1, and 2 represent the first and second vibrational 

excited states within the molecule. 
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Figure 2-16: Comparison of a reference spectrum for magnetite (Fe3O4) to an experimentally 

collected Fe3O4 spectrum. 

2.3.4.2. Basic Principles of Fourier Transform Infrared (FTIR) Spectroscopy 

IR spectroscopy relies on the same type of quantized vibrational changes associated with Raman 

scattering. As such, the IR spectrum is frequently similar to that of the Raman spectrum for the 

same species.  In IR spectroscopy an incident beam of IR radiation is used to excite the naturally 

occurring vibrations within the molecule. The relative positions of atoms, even in solids, are not 

fixed but change due to constant vibrations about the molecular bonds. These vibrations are 

broadly classified as either stretching, the continuous change in interatomic distance between 

two atoms, or bending vibrations, caused by a change in the angle between bonds [4].  If the 

frequency of the molecular vibration exactly matches that of the incident radiation, absorption 

will occur, inducing a change in the amplitude of the vibration. This absorption (or 

transmittance) of the radiation is then plotted versus wavenumber (cm-1) to form the IR 

spectrum. Since each material is a different combination of atoms, no two compounds will 

produce the same IR spectrum which makes this technique useful for the identification of 

unknown samples. 
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FTIR employs an optical device called an interferometer which produces a signal incorporating 

all of the IR frequencies. Most interferometers use a beamsplitter which divides the incident IR 

beam into two optical beams. The first beam reflects off a mirror which is fixed in place while 

the second beam reflects off a second mirror which is moved in small increments from the 

beamsplitter. When the two beams recombine at the beamsplitter, the path of one beam is at a 

fixed length while the other has changed as the mirror moved. This process allows the 

simultaneous collection of all of the IR frequencies in a very short period of time. In order to 

convert this interferogram to a wavenumber spectrum, the frequencies are decoded via a 

Fourier transformation. Additional advantages of FTIR instrumentation include: increased 

sensitivity, mechanical simplicity, and the ability for internal calibration [4]. Figure 2-17 shows 

an experimentally obtained FTIR spectrum for Fe2(OH)2CO3 (chukanovite).  

 

 

Figure 2-17: Example of an experimental FTIR spectrum obtained for a chukanovite 

(Fe2(OH)2CO3) corrosion product. 



www.manaraa.com

59 
 

 

2.3.4.3. Raman vs. IR Spectroscopy 

While both Raman and IR provide information about the vibrational frequencies of molecules, 

there are advantages and disadvantages to each. Due to the differences in selection rules for 

each technique, some vibrations are only Raman-active while others are IR-active. As such, 

Raman and IR are often used in conjunction as complimentary techniques. Raman, however, 

provides some significant advantages over conventional IR techniques. Since water molecules 

are weak Raman scatterers, it is possible to collect Raman spectra of samples in aqueous 

solution. This is particularly advantageous in the in-situ analysis of corroding samples over an 

extended period of time. Similarly, Raman spectra can also be collected on samples which may 

be air-sensitive or hydroscopic through the use of sealed glass vessels. Unlike IR, the glass does 

not absorb the Raman radiation. The laser source in Raman also provides an advantage due to 

the reduced spot size that can be analyzed, which is useful when only small quantities of sample 

are available or when the sample surface is highly heterogeneous, a common occurrence in 

corroded samples. Finally, a region covering 4,000 to 50 cm-1 can be scanned in a single 

recording with Raman. IR, however, requires a change of the gratings, beam splitters, filters, and 

detectors to cover the same spectral range [11]. 

Disadvantages of using Raman over IR include: (i) the requirement of a strong laser source to 

observe weak Raman scattering which may cause localized heating and photodecomposition 

effects; (ii) irradiation by the laser source can cause significant fluorescence in certain 

compounds; and (iii) a Raman system is more expensive than a conventional IR system [11].   

2.3.4.4. Raman Experimental Details 

Raman spectroscopy was used in order to identify the corrosion products formed on electrode 

surfaces during electrochemical and corrosion experiments. Samples were excited using a 

Renishaw 2000 Raman spectrometer equipped with a 50 mW HeNe laser at a wavelength of 

632.8 nm. The laser beam was focused using an optical microscope with a 50X objective lens. 

The Raman spectrometer was calibrated at room temperature daily using a Si crystal standard. 

GRAMS 386 Raman software was used both to collect and manipulate the spectra. Each 

spectrum was measured for an exposure time of 60 seconds over the range of 2000 to 120 cm-1 

at laser powers of either 10 or 25%. Several representative spectra were recorded over each 

sample surface.  
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2.3.4.5. FTIR Experimental Details 

FTIR was used to confirm the identity of chukanovite (Fe2(OH)2CO3) on the sample surfaces due 

to its Raman inactivity. Samples were analyzed with a Bruker-Hyperion 2000 FTIR spectrometer 

in reflectance mode. Each spectrum was collected via the average of 32 scans over a gold 

background. Three or four spectra were collected from different areas for each sample.  

2.4. REFERENCES 

 

[1] M. Stern and A. L. Geary "Electrochemical polarization I. A theoretical analysis of the 
shape of polarization curves" Journal of the Electrochemical Society 104 (1) (1957) 56-63 

[2] R. G. Kelly, J. R. Scully, D. W. Shoesmith and R. G. Buchheit "Electrochemical techniques 
in corrosion science and engineering" Marcel Dekker Inc. , New York, (2003) 

[3] D. C. Harris "Quantitative chemical analysis" 7th Edition, W. H. Freeman and Company, 
New York, (2007) 

[4] D. A. Skoog, F. J. Holler and S. R. Crouch "Principles of instrumental analysis" 6th Edition, 
Thomson Brooks/Cole, Belmont, CA, (2007) 

[5] M. E. Orazem and B. Tribollet "Electrochemical impedance spectroscopy" John Wiley & 
Sons, Inc., New Jersey, (2008) 

[6] J. H. Wittke, "Instrumentation" (2008) http://nau.edu/CEFNS/Labs/Electron-
Microprobe/GLG-510-Class-Notes/Instrumentation/ (Accessed January 8, 2016) 

[7] R. F. Egerton "Physical principles of electron microscopy : an introduction to TEM, SEM, 
and AEM" Springer, New York, (2005) 

[8] N. Yao "Focused ion beam systems: Basics and applications" Cambridge University Press, 
New York, (2007) 

[9] P. R. Munroe "The application of focused ion beam microscopy in the material sciences" 
Materials Characterization 60 (1) (2009) 2-13 

[10] "Detecting secondary electrons or secondary ions with the SESI detector" 
https://www.zeiss.com/content/dam/Microscopy/Products/electron-
microscopes/upgradesEM/pdf/upgradeinfo-sesi-detector.pdf (Accessed January 8, 
2016) 

[11] J. R. Ferraro and K. Nakamoto "Introductory Raman spectroscopy" Academic Press Inc., 
San Diego, (1994) 

[12] DSI, "Renishaw 2000 raman imaging microscope" (2013) https://fas.dsi.a-
star.edu.sg/equipments/raman.aspx (Accessed October 9, 2015) 

[13] M. Razdan "Electrochemical and surface compositional studies on uranium dioxide" PhD 
Thesis, Department of Chemistry, University of Western Ontario, (2013) 

 



www.manaraa.com

61 
 

 

Chapter 3 

Interactions between Carbon Steel and UO2 Corrosion Fronts inside a Failed Nuclear Waste 

Container 

Shannon L.W. Hill, Nazhen Liu, Ziqiang Qin, Dmitrij Zagidulin, David W. Shoesmith 

Department of Chemistry and Surface Science Western, The University of Western Ontario, London, ON, Canada 

3.1. INTRODUCTION 

A by-product of the use of nuclear energy is the generation of spent fuel. As of 2014, roughly 

2.51 million bundles of used CANDU fuel are being stored at Canadian reactor sites [1]. In 

Canada the plan is to seal the spent nuclear fuel in metallic containers and emplace them in a 

deep geologic repository (DGR) [2]. This approach is based on multiple barriers with the primary 

barrier being a carbon steel vessel with an outer corrosion resistant Cu coating [3]. While copper 

is thermodynamically stable under anoxic conditions, and should undergo minimal corrosion [4, 

5], the consequences of container failure must be considered. 

Within a failed container, two corrosion fronts will be established; one on the fuel surface and a 

second on the inner surface of the steel vessel (Figure 3-1), on the conservative assumption that 

the Zircaloy fuel cladding does not act as a barrier. While the groundwaters entering the 

container will be anoxic after the initial emplacement period, radioactive decay processes in the 

fuel will cause water radiolysis with the radiolytic oxidants leading to fuel corrosion [6]. The 

dominant oxidant will be H2O2 due to alpha-radiolysis [7-9]. The H2O2 can either cause fuel 

corrosion, decompose, or be transported away from the surface. 

The second corrosion front on the surface of the steel will lead to the production of soluble Fe2+ 

and H2 as well as a surface layer of magnetite (which is not expected to protect the steel). The 

model recently developed by Wu et al. [9] shows that corrosion of the fuel will be strongly 

influenced by the interaction of radiolytic oxidants with the products of steel corrosion. The Fe2+ 

will react with the radiolytic H2O2 via the Fenton reaction, 

 2𝐹𝑒2+ + 𝐻2𝑂2 → 2𝐹𝑒3+ + 2𝑂𝐻− (3-62) 

with model calculations indicating that [Fe2+] in the range 0.1 µM to 1.0 µM will consume 67% to 

90% of the radiolytic H2O2. However, the dominant species controlling fuel corrosion was found 
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to be H2, which calculations suggested could completely suppress fuel corrosion when present 

at µM levels. 

For Fe2+ and H2 to control redox conditions inside a failed container it is imperative that the steel 

vessel remain in the active condition. A possible mechanism by which the steel could be 

passivated and Fe2+/H2 production suppressed, is passivation of the steel by reaction with 

radiolytic H2O2 transported via the groundwater in the container. In this chapter, we investigate 

the corrosion of carbon steel in H2O2-containing solutions under both deaerated conditions, 

when traces of dissolved O2 could be present in the solution and under anaerobic conditions, 

when dissolved O2 levels would be expected to be ~0.1 ppb. The results of this study are then 

compared to model calculations, to assess whether or not steel passivation is a possibility. 

 

Figure 3-1: Interactions of the steel and UO2 corrosion products and radiolytically produced 

oxidants within a failed spent nuclear fuel container. 

3.2. EXPERIMENTAL DETAILS 

3.2.1. Materials and Electrode Preparations 

Electrodes were fabricated using A516 Gr 70 carbon steel (0.23 C; 1.11 Mn; 0.07 P; 0.03 S; 0.26 

Si; 0.01 Cu; 0.01 Ni; 0.02 Cr; 0.004 Mo; 0.036 Al; 0.019 V; 0.003 O [wt.%], balance Fe). For the 

experiment performed under deaerated conditions on the bench-top, the electrode was a 

rectangular rod 6.5 cm in length with a 1 cm height and width. For the experiment performed in 

an anaerobic chamber, the electrode was a circular coupon (1.0 cm diameter and 0.5 cm 



www.manaraa.com

63 
 

 

thickness) emplaced in a high-performance epoxy resin with a single exposed flat face (0.7854 

cm2). The connection between the electrode and the stainless steel rod used to connect the 

electrode to external measuring circuits was covered first with laboratory film (Parafilm), and 

then with several layers of Teflon tape to prevent exposure of the connection to the electrolyte. 

The electrodes were wet polished with a series of SiC papers (Presi) to a final 1200 grit finish and 

rinsed in type I water (conductivity of 18.2 MΩ.cm) before emplacement either directly into the 

electrolyte solution or into an anaerobic chamber in preparation for electrolyte exposure. 

3.2.2. Electrochemical Cell and Equipment 

Experiments were conducted in a three-compartment glass electrochemical cell equipped with a 

Pt counter electrode and a saturated calomel reference electrode (SCE; 0.241 V vs. SHE). All 

potentials are reported on the SCE scale. In the deaerated bench-top experiment, the cell was 

housed within a grounded Faraday cage to minimize interference from external noise. For the 

anaerobic experiment, the cell was placed in an anaerobic chamber to avoid the influx of 

atmospheric O2. For the deaerated bench-top experiment a Solartron 1480 multistat running 

CorrWare software was used to control applied potentials and to record current responses. For 

the experiment performed in the anaerobic chamber, a Solartron Analytical Modulab was used 

with raw data converted and analyzed using CorrView software. 

3.2.3. Experimental Solutions 

Experiments were performed in a solution containing 0.1 M NaCl, 0.1 M Na2SO4 and 0.01 M 

NaHCO3/Na2CO3 set to a pH of 8.9 ± 0.5 (i.e., within the pH range of 7-10 expected for 

groundwaters) [10]. In the bench-top deaerated experiment, the solution was continuously 

sparged with UHP Ar beginning one hour prior to measurements. In the anaerobic chamber 

experiment, ultra-high purity water was sparged with UHP Ar at a high flow rate for one hour 

prior to being sealed and transferred into the anaerobic chamber. The flask was sealed with the 

entire volume of the flask filled with water to avoid trapped air. Once inside the chamber no 

additional Ar sparging was necessary. 

3.2.4. Experimental Procedure 

Electrodes were cathodically cleaned at a potential of -1.3 V for three minutes to reduce air-

formed surface oxides. The potential was then held at -1.1 V to avoid further H2 production 
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while H2 bubbles were removed from the surface. Throughout an experiment the corrosion 

potential (ECORR) was monitored continuously and the polarization resistance (RP) measured 

using the linear polarization resistance (LPR) technique every 3 to 6 hours for the deaerated and 

anaerobic cases. The RP is calculated from the linear relationship between current and potential 

observed by scanning the potential ± 10 mV from the ECORR at a scan rate of 0.1667 mV/s. 

Prior to the first addition of H2O2, the steel was allowed to corrode and ECORR monitored to 

ensure similar behaviour in both experiments. Subsequently, small amounts of H2O2 were added 

to achieve concentrations in the range 0.1 to 20 µM, values expected to be conservatively large 

compared to anticipated concentrations within a failed container. The experiments were 

terminated when either passivation occurred or further additions of H2O2 had no apparent 

influence on ECORR and RP. 

3.2.5. Surface Analysis 

To identify the iron corrosion products formed, a Renishaw 2000 Raman spectrometer with a 

632.8 nm laser line, using an optical microscope with a 50X magnification objective lens, running 

GRAMS 386 software was used. To identify the film morphology, SEM was performed using a 

Hitatchi S-4500 Field Emission SEM for the deaerated experiment and a LEO (Zeiss) 1540XB 

FIB/SEM for the anaerobic experiment. 

3.2.6. Computational Modelling 

The mathematical model is numerically solved using COMSOL Multiphysics (version 4.3.1.151, 

COMSOL Inc.) a commercial simulation package based on the finite element model. The model 

was simulated using the diluted species transportation module of the COMSOL software. 

3.3. RESULTS AND DISCUSSION 

3.3.1. Electrochemical Analysis 

Figure 3-2 and Figure 3-3 show the ECORR and RP values recorded under deaerated and anaerobic 

exposure conditions over periods of 35 and 66 days, respectively.  The red stars indicate the 

time the LPR measurements were made immediately after a H2O2 addition. In both experiments, 

the value of ECORR is < –0.800 V prior to H2O2 addition confirming that corrosion is proceeding 
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under anoxic conditions by reaction of the steel with water. Under these conditions, the steel 

would be expected to form a magnetite layer 

 3𝐹𝑒 + 4𝐻2𝑂 → 𝐹𝑒3𝑂4 + 4𝐻2 (3-63) 

 

accompanied by dissolution as Fe2+, the latter being a process accelerated by the anion content 

of the solution, for example HCO3
-/CO3

2-, which is known to form soluble complexes such as 

FeHCO3
+, Fe(CO3)2

2-, and Fe(HCO3)2. The increases in RP values in both environments are 

consistent with the thickening of a surface Fe3O4 layer. This initial film growth appears to occur 

slightly differently in the two experiments, the RP value increasing to a substantially higher value 

in the anaerobic compared to the deaerated solution (Figure 3-2 and Figure 3-3). However, even 

prior to the addition of H2O2, RP begins to decrease again in the anaerobic experiment, Figure 

3-3. This may indicate the initially formed Fe3O4 film is restructured, possibly developing some 

porosity. 

 

Figure 3-2: Corrosion potential (ECORR) under deaerated conditions. Points indicate the RP values, 

with the red points showing RP values recorded after an addition of H2O2. 
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Figure 3-3: Corrosion potential (ECORR) under anaerobic conditions ([O2] ~ 0.1 ppb). Points indicate 

RP values, with the red points showing RP values recorded after the addition of H2O2. 

 

 

Figure 3-4: Metastable transients in ECORR recorded under (a) deaerated and (b) anaerobic 

corrosion conditions. 
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On first adding H2O2 (at (1) in both experiments, Figure 3-2 and Figure 3-3) the ECORR responds 

but only transitorily, eventually recovering to the value prior to the addition. This response is 

seen as positive-going spikes in the potential, and is more noticeable for the anaerobic 

experiment (Figure 3-3). Minor changes in RP are also observed but are less readily discernible. 

Further additions of H2O2 to the deaerated experiment (indicated by the red stars in Figure 3-2) 

again show only transitory changes in ECORR but also temporary decreases in RP confirming the 

surface is reactive in the presence of H2O2. Increasing [H2O2] to 5.2 µM after 10 days ((2) in 

Figure 3-2) led to a significant increase in RP but only a small decrease in ECORR. The most likely 

reason for the increase in RP is an accelerated growth of the Fe3O4 surface layer or a decrease in 

its porosity. On increasing the [H2O2] to ≥ 6.1 µM ((3) in Figure 3-2) the ECORR begins to increase 

slightly accompanied by successive decreases in RP as the [H2O2] is increased. Figure 3-4(a) 

shows that metastable transients occur during this period as RP decreases. The positive surge in 

ECORR followed by a slower recovery to the original value would be consistent with enhanced 

anodic dissolution occurring at fracture sites in the surface film followed by their subsequent 

repair as the film is either reformed or corrosion product is deposited within the breakdown 

site. While Figure 3-4(a) indicates that two spikes in ECORR occur in sequence this is not always 

the case. One explanation for the behaviour shown is that the initial film breakdown stimulates 

an adjacent second breakdown. Figure 3-4(b) shows similar behaviour but the transients are of 

shorter duration. Whether or not steel corrosion is accompanied by H2O2 decomposition, 

 2𝐻2𝑂2 → 𝑂2 + 2𝐻2𝑂 (3-64) 

as might be expected on a conductive and probably catalytic Fe3O4 surface, cannot be discerned 

in these experiments. 

After 22 days at a total added [H2O2] of 16.1µM ((4) in Figure 3-2) the slight increase in ECORR is 

accompanied by a doubling of RP. This is rapidly followed by a major and irreversible transition 

in ECORR to a value in the region of –0.550 V. This transition is accompanied by a substantial 

decrease in RP. During and after this transition RP becomes erratic and no longer a reliable 

indication of the corrosion rate. Similar coincidental behaviour in ECORR and RP on carbon steel 

has been observed previously under similar deaerated conditions [11, 12]. The increase in RP 

during the early stages of the transition can be interpreted as an attempt by the steel to 

passivate and the subsequent decrease as the transition progresses to completion to the 
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formation of localized corrosion sites; i.e., pitting. Under these conditions the RP values reflect 

the presence of these actively corroding locations and are no longer a reliable indication of the 

general corrosion behaviour of the steel. 

Despite the considerably higher RP values the steel electrode exposed in the anaerobic 

experiment shows a similar decrease in RP without any significant increase in ECORR, as the [H2O2] 

is increased,  Figure 3-3 (12 to 30 days). However, further increases in [H2O2] to a final 

concentration of 6.0 µM ((5) in Figure 3-3) did not stimulate the transition observed in the 

deaerated experiment, with ECORR achieving a steady-state value of ~ –0.800 V after 65 days. 

Based on a comparison of the two experiments and previous observations, the transition to a 

passive state undergoing localized corrosion observed in the deaerated experiment can be 

attributed to the slow passivation of the steel surface caused by the low background 

concentration of dissolved O2 present in this experiment. The alternative source of O2, H2O2 

decomposition by equation 1-3, is present in both experiments, but apparently not in sufficient 

quantities to induce passivation. 

3.3.2. Surface Analysis of Steel in the Deaerated Solution 

Figure 3-5 shows the SEM micrographs recorded on the steel surface after the 35 day exposure 

to the deaerated solution. The low magnification micrograph (Figure 3-5 (a)) shows that the 

surface is covered with a uniformly distributed compact film with areas apparently covered with 

a thin deposit. A number of individual larger crystals (or deposits) are also visible. The compact 

film is thin enough that the polishing lines of the initially prepared steel are still discernable. 

Figure 3-5(b) shows that the thin deposit is comprised of hexagonal crystals grown at 

fractures/faults in the compact layer. This morphology is consistent with the observation of 

potential transients, Figure 3-4(a), indicating periodic breakdown of the compact layer followed 

by their repair due to the subsequent deposition of corrosion product. Several well-formed 

hexagonal crystals (Figure 3-5 (c)), on the order of 5-15 µm in size, were also dispersed over the 

sample surface. 

Figure 3-6 shows the ex-situ Raman analyses for both the general surface regions and the large 

hexagonal crystals (Figure 3-5 (c)). Spectra (a) and (b) recorded on the general surface indicate 

the presence of green rust (GR) which is a frequently observed corrosion product on iron 

surfaces when traces of dissolved O2 are present [13] as would be the case in the deaerated 
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experiment. GRs are layered double-hydroxide (LDH) compounds isostructural to pyroaurite 

(Mg6Fe2(OH)16CO3) consisting of HCP sheets of Fe(II)(OH)6 octahedra where some Fe(II) has been 

replaced by Fe(III). The substitution of Fe(III) into the layers lends a positive charge to the structure 

which is then balanced by anions located between the Fe(OH)2 sheets [14-16]. The most 

commonly found anions within the GR structure are chloride (green rust I) and sulphate (green 

rust II). The small bands, Figure 3-6(a) and (b), from ca. 200-250 cm-1 (ref. 219-221 cm-1) [17] 

suggest that the coordinating anion of the green rust formed in this deaerated experiment is 

chloride rather than carbonate or sulphate, indicating an idealised structure for the GR(Cl-) of 

[Fe3
(II)Fe(III)(OH)8][Cl•2H2O] [18, 19]. The bands at 433 and 516 cm-1 (ref. 434 and 510 cm-1) [17] 

are assigned to the Fe2+―OH and Fe3+―OH stretching modes of the green rust structure [17]. 

From the Raman data, the hexagonal plates seen within Figure 3-5(b) can be assigned to the 

GR(Cl-) corrosion product. Several others have also reported GR to have a hexagonal platelet 

structure [13, 20]. 

 

Figure 3-5: SEM micrographs showing the morphology of the corrosion film and deposits on the 

steel surface after corrosion under deaerated conditions. 

Raman analysis of the large hexagonal crystals (line 6(c)) seen in Figure 3-5(c) suggests they are 

composed of ferrihydrite based on Raman bands at 359, 512 and 706 cm-1 (ref.  370, 510 and 

710 cm-1) [21]. The band centered at 1370 cm-1 (ref. 1340 cm-1) may originate from the 

ferrihydrite as observed by Mazzetti and Thistlethwaite [21]. Two forms of ferrihydrite are 

reported, 2-line and 6-line, so named because their XRD patterns show 2 or 6-8 reflections as 

the structural order increases [13]. The lack of asymmetry in the peak at 706 cm-1 and the 

greater intensity of the band at 359 cm-1 to that of the 512 cm-1 suggests that the form of 

ferrihydrite formed during the corrosion process was the 6-line form [21]. The structure seen 

within Figure 3-5(c) for the SEM micrograph showing a highly ordered hexagonal crystal is also in 
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line with the formation of a more structurally ordered ferrihydrite. Ferrihydrite (Fe10O4(OH)2) 

has been shown to form in atmospheric corrosion conditions [22, 23] and is a metastable 

precursor to phases such as hematite (α-Fe2O3). 

The absence of a Raman signal for Fe3O4 (expected at 667 cm-1) is at first surprising since one 

would have expected the compact film to be dominantly this phase. This suggests either the 

compact film is amorphous or has been converted to GR by H2O2 or the traces of dissolved O2 

present in this experiment. This latter explanation would support our conclusion that the 

general surface is at least partially passivated as indicated by the major transition in ECORR, Figure 

3.2.

 

Figure 3-6: Raman spectra (a-c) recorded at various locations on the steel after corrosion under 

deaerated conditions (Figure 3-2). 
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3.3.3. Surface Analysis of Steel in the Anaerobic Solution 

Figure 3-7 shows the SEM micrographs recorded on the steel surface after 66 days of exposure 

within the anaerobic experiment. The film appears to be thin and compact as evidenced by the 

visible polishing lines (Figure 3-7(a)). The cracking of the film was likely induced by the vacuum 

exposure of both the anaerobic chamber and that of the SEM itself. Figure 3-7(b) shows that the 

film is composed of a fine crystalline film interspersed with smooth hexagonal crystals. One 

small region of the surface was shown to be covered in a thicker and highly irregularly shaped 

crystalline corrosion product (Figure 3-7(c)). 

 

Figure 3-7: SEM micrographs showing the morphology of the corrosion film and deposits on the 

steel surface after corrosion under anaerobic conditions. 

Figure 3-8 shows the ex situ Raman spectra recorded at several locations across the surface. The 

band at 667 cm-1 (ref. 667 cm-1) [24] in line (a) is assigned to the strongest A1g mode of Fe3O4 

[24]. Formation of Fe3O4 confirms the anoxic corrosion of the steel under anaerobic conditions. 

Two bands centered between 1300 and 1600 cm-1 within line (a) are attributed to Fe3C residues 

left behind from the dissolution of the α-Fe in the pearlite grain structure of the steel [24]. 

Evidence of Fe3C residues of pearlite indicates the presence of areas covered only by a thin 

Fe3O4 film, which would further suggest that the surface of the steel coupon has not been 

passivated by the addition of the H2O2. The large fluorescence in the spectrum, Figure 3-8(a), is 

due to electronic excitations of the underlying Fe metal [11]. 

Spectra (b) and (c) show bands at 330, 420 and 730 cm-1 which could indicate the formation of 

either akaganeite (β-FeO(OH)1-xClx) [25] which is known to form under chloride containing 

aqueous conditions [26, 27], or maghemite (ref.  350, 505, 660 and 710 cm-1) [28]. Réguer et al. 

reported strong Raman bands at 310, 390, and 720 cm-1 in conjunction with less intense bands 
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at 490, 540, and 610 cm-1 for akaganeite [27]. Rémazeilles et al. reported broad bands at 308, 

390, 418 and 722 cm-1 [26]. The large discrepancy in the assignment of Raman bands for β-

FeOOH may be due to the various chloride contents possible within the structure which has 

been shown to alter the Raman spectra [27]. The absence of the distinct peak at 310 cm-1 for 

akaganeite and the band at 660 cm-1 for maghemite makes the structure elucidation precarious. 

All iron oxides present a main peak in the region of 650-700 cm-1, except in the case of hematite, 

goethite, and lepidocrocite [28]. As such, the classification of many iron oxides requires 

examination of the shape and broadness of the peaks in this region. In our case, the breadth of 

the peak in this region, as well as the relatively low intensity of the spectrum makes it hard to 

definitively state its compositions. There is good possibility that spectra (b) and (c) may be 

caused either by a very poorly crystalline iron species or a mixture of several iron 

oxide/oxyhydroxide species. 

The Raman band at 1072 cm-1 (ref.1070-1072 cm-1, Figure 3-8(d)) is due to the ν1 C―O 

symmetric stretching of a coordinated CO3
2- species [29, 30]. However, the lack of any other 

Raman bands in the spectrum suggests that while the CO3
2- component of the film is seen, the 

remainder of the corrosion product structure is not Raman active. The highly crystalline 

morphology seen in the SEM micrograph in Figure 3-7(c) is similar to that seen in our own work 

(subsequent Chapters), on specimens not exposed to H2O2, which also displayed the 

characteristic C―O stretching Raman band at 1072 cm-1. FTIR analysis of these samples 

confirmed the formation of chukanovite (Fe2(OH)2CO3). Pandarinathan et al. also showed the 

same structural morphology for chukanovite formed during the corrosion of sand-deposited 

carbon steel in CO2 saturated brines at 80°C [31]. 
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Figure 3-8: Raman spectra (a-d) recorded at various locations on the steel after corrosion under 

anaerobic conditions (Figure 3-3). 

3.3.4. Computational Modelling 

A model developed previously to determine fuel corrosion rates [9] was adapted to include the 

possibility of the reaction of H2O2 with the inner surface of the steel vessel. This model takes 

into account the consumption of H2O2 by the corrosion of the fuel, decomposition catalyzed by 

the fuel surface, and by reaction with soluble Fe2+ from the corroding steel vessel in the Fenton 

reaction (equation 3-62). The expected long term corrosion rate of the steel is expected to be 

around 0.1 µm/a [32] with corrosion proceeding on a magnetite-covered surface. The model 

was used to investigate the [H2O2] expected on the inside surface of the steel container. 

Figure 3-9(a) shows the [H2O2] profile between the fuel surface, at which it is produced (0 mm 

on the plot), and the steel surface set at a distance of 1 mm from the fuel surface. Such a 

separation is conservatively close and minimizes the transport range for H2O2 between the two 
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surfaces. After 500 s the [H2O2] at the fuel surface is calculated to be 4.05 x 10-10 M. Figure 3-9(b) 

shows that the [H2O2] at the steel surface becomes negligibly small after ~8000 s of radiolytic 

H2O2 production at the fuel surface. The variability in calculated values is due to the “noise” 

encountered in the numerical calculations at such low values. 

Since the corrosion rate of the steel is uncertain, the sensitivity of the model to various 

parameters and reactions was evaluated. As expected, increasing the distance between the fuel 

and steel surfaces to more realistic separations leads to a decrease in [H2O2] at the steel surface. 

Figure 3-10 shows the influence of steel corrosion rate on the predicted [H2O2] at the steel 

surface. An increase in corrosion rate from 0.1 µm/a to 1.0 µm/a leads to a decrease in this 

concentration. This can be attributed to the increase in [Fe2+] and [H2] both of which increase 

the consumption rate of H2O2. For H2 this is by reaction with H2O2 catalyzed on the noble metal 

particles in the spent fuel and for Fe2+ by reaction with H2O2 in the Fenton reaction. Additional 

calculations show that the key reaction consuming H2O2 and preventing its transport to the steel 

surface is the Fenton reaction (equation 3-62). For the [H2O2] at the steel surface to approach 

the micro-molar level this reaction would have to not occur, which is extremely unlikely. 

 

Figure 3-9: (a) [H2O2] profile from the UO2 surface (0.0 mm) to the surface of the carbon steel 

(1.0 mm) after 500 s: (b) plot of [H2O2] at the carbon steel surface as a function of the period of 

α-radiolysis at the fuel surface (surface separation, 1 mm). The different coloured points are for a 

series of simulations using different time intervals in the calculation with slight variations being 

produced due to the fact the calculated values are for a boundary parameter (a discontinuity in 

the calculation). 
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Based on these calculations we can conclude that it is highly unlikely that H2O2 concentrations 

will reach the micro-molar levels at which an influence on steel corrosion would become 

significant, which, as discussed above, would be in the 1 to 10 µM range. Even for 

concentrations in this range there is no experimental indication that exposure to H2O2 would 

lead to passivation of the steel and suppression of the production of the redox scavengers, Fe2+ 

and H2. 

 

Figure 3-10: The influence of the steel corrosion rate on the [H2O2] at the steel surface as a 

function of the period of α-radiolysis at the fuel surface (surface separation, 1 mm). 

3.4. CONCLUSIONS 

The influence of H2O2 on the corrosion of carbon steel has been investigated under deaerated 

conditions, when traces of dissolved O2 could be present, and under anaerobic conditions, when 

the [O2] would be expected to be at the ppb level. 

Under anaerobic conditions active steel corrosion, producing Fe2+and H2 was maintained up to 

[H2O2] = 6 µM. For deaerated conditions, passivation leading to pitting occurred for added 

[H2O2] ≥ 10 to 15 µM. However, this was attributable to the presence of traces of dissolved O2 

despite the continuous Ar sparging. 
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The presence of non-passivating FeIII-containing corrosion products confirmed the interaction of 

H2O2 with the steel. 

Model calculations indicate that [H2O2] > 10-9 M are effectively unachievable at the steel surface. 

Based on these results it can be concluded that active steel corrosion will be maintained inside a 

failed waste container, and that the soluble corrosion products will be available to supress fuel 

corrosion and radionuclide release. 
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Chapter 4 

The Effects of Groundwater Anions on the Corrosion of A516 Gr70 Carbon Steel 

4.1. INTRODUCTION 

In the anoxic environment anticipated in deep geological repositories for spent nuclear fuel, 

carbon steel containers are expected to corrode anaerobically. The corrosion behaviour, 

including the corrosion rate and the composition of the corrosion products, has been shown to 

have a complex dependence on temperature, pH, redox conditions, immersion time, and the 

chemistry of the groundwater [1-8]. While a variety of groundwater species such as Ca2+, Mg2+, 

Cl-, SO4
2-, CO3

2-, and SiO3
2- are known to affect carbon steel corrosion, the nature and content of 

anions have a strong influence on the electrochemical behaviour and nature of the corrosion 

product deposits [2, 5, 6, 8].  

The groundwater in a Canadian nuclear repository could contain high levels of Cl-, an anion 

known to be highly aggressive in the corrosion of carbon steel [9]. Due to the clay based 

bentonite backfill material used in the repository, the groundwaters contacting the carbon steel 

container will be near neutral or slightly alkaline (pH 8.4) and may contain fairly high levels of 

carbonate. Consequently, it is possible that the corrosion products formed on the container 

could contain carbonates such as FeCO3 (siderite), carbonated green rusts, and Fe2(OH)2CO3 

(chukanovite) [7, 8]. Refait et al. [8] suggest that the nature of the corrosion products formed in 

CO3
2- containing environments will be controlled mainly by the interfacial ratios of [CO3

2-]/[Fe2+] 

and [OH-]/[Fe3+]. In addition, SO4
2- has been shown to be an aggressive anion increasing the 

anodic dissolution rates and pitting sensitivity of carbon steel [1, 2, 5, 6, 10-14].  

Several researchers have attempted to rank the aggressiveness of various anions on carbon 

steel corrosion. Vyskocil [15] claimed that the aggressiveness of anions in neutral solutions 

decreased in the order F- > SO4
2- > Cl- > Br- > I-. King and Davidson [16] suggested that the 

corrosion rate decreased with decreasing complexation; i.e., P2O7
4- > PO4

3- > Cl- > SO4
2- > ClO4

-. 

Kolotyrkin [17] distinguished anions based on their aggressive (Cl-, Br-, I-) or non-aggressive 

(SO4
2-, ClO4

-, CO3
2-, NO3

-, CrO4
2-) tendency. Tamura et al. [18] suggested that the corrosion rate 

decreased in the order ClO4
- > NO3

- > Cl- > SiO4
2- > Br- > I- > SO4

2-, and Tanaka et al. [19] found 

that the influence of anions on the formation of artificial rust particles decreased in the order 
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SO4
2- ≥ Cl- > NO3

-. The differences between these studies can be ascribed to the various anion 

concentrations and differences in pH and temperature used.  

The objective of the research described in this chapter is to explore the effect of common 

groundwater anions on the electrochemical and corrosion behaviour of A516 Gr70 carbon steel, 

with a primary focus on the effects of Cl-, HCO3
-/CO3

2- and SO4
2-, with an emphasis on highly 

concentrated Cl- solutions. A combination of electrochemical techniques were employed to 

characterize the corrosion behaviour under deaerated conditions and Raman spectroscopy and 

scanning electron microscopy (SEM) techniques were used to study the identity and morphology 

of the corrosion products.  

4.2. EXPERIMENTAL DETAILS 

4.2.1. Materials and Electrode Preparations 

Electrodes were fabricated as circular coupons (1.0 cm diameter) from a 0.5 cm thick plate of 

A516 Gr 70 carbon steel (0.23 C; 1.11 Mn; 0.07 P; 0.03 S; 0.26 Si; 0.01 Cu; 0.01 Ni; 0.02 Cr; 0.004 

Mo; 0.036 Al; 0.019 V; 0.003 O [wt.%], balance Fe). Each electrode was set in a high-

performance epoxy resin such that only a single face was exposed (0.7854 cm2). Connection to 

external measuring circuits was achieved with a stainless steel rod first covered with Parafilm 

and then with several layers of Teflon tape to avoid exposure to the electrolyte. Each electrode 

was wet polished with 180, 600, 800, 1000, and 1200 grit SiC papers (Presi), and rinsed in type 1 

water (conductivity 18.2 MΩ.cm) before being placed in the solution.   

4.2.2. Electrochemical Cell and Equipment 

Experiments were conducted in a three-compartment glass electrochemical cell. A Pt foil 

connected to a Pt wire was used as the counter electrode and a saturated calomel electrode 

(SCE; 0.241 V vs. SHE) as the reference electrode. All potentials are reported on the SCE scale. 

The electrochemical cell was housed within a grounded Faraday cage to minimize interference 

from external noise sources. Corrosion potentials (ECORR), polarization resistance (RP) 

measurements, and cyclic voltammograms were recorded using a Solartron 1480 multistat 

running CorrWare software.  
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4.2.3. Experimental Procedure 

Prior to ECORR/LPR experiments, electrodes were cathodically cleaned at -1.3 V for three minutes 

to reduce any air formed surface oxides, and the potential held at -1.1 V for seven minutes to 

remove H2 bubbles from the sample surface. RP values were determined at six hour intervals via 

linear polarization resistance (LPR) measurements by scanning the potential over the range ECORR 

±10 mV at a scan rate of 0.1667 mV/s. ECORR experiments were run for a period of ~14-15 days.  

Prior to cyclic voltammetry (CV) experiments, electrodes were cathodically cleaned at -1.3 V and 

-1.1 V for two and three minutes, respectively. The potential was then scanned from -1.1 V to 

various anodic limits at a scan rate of 5 mV/s.  

4.2.4. Experimental Solutions 

Experiments were performed in a series of solutions containing only Cl- or a combination of 5.0 

M Cl- with various concentrations of HCO3
-/CO3

2- or SO4
2-. The highly concentrated (5.0 M) Cl- 

solutions were used to mimic the high salinity of the sedimentary groundwaters at the 

repository depth. In comparison, the concentration of Cl- in seawater is only approximately 0.6 

M. The pH was set to 8.9 ± 0.5 to simulate the expected pH range of the groundwater (pH 7-10). 

Before starting the experiment each solution was continuously sparged at a high flow rate with 

ultra-high purity Ar for at least one hour. Ar sparging was continued throughout the experiment 

at a reduced flow rate to maintain minimal levels of dissolved O2 within the solution.  

4.2.5. Surface Analysis 

Iron corrosion products were identified using a Renishaw 2000 Raman spectrometer equipped 

with a 632.8 nm laser line and an optical microscope with a 50X magnification objective lens. 

GRAMS 386 Raman software was used for the collection and fitting of spectra. SEM was used to 

determine the morphology of corroded surfaces using either a Hitachi S-4500 Field Emission 

SEM or LEO (Zeiss) 1540XB FIB/SEM.  



www.manaraa.com

82 
 

 

4.3. RESULTS 

4.3.1. Effects of Chloride 

4.3.1.1. ECORR and RP Measurements 

Figure 4-1 shows the ECORR values recorded on the steel coupons, over exposure periods of 6-15 

days, to deaerated solutions containing [Cl-] of 0.01, 1.00, and 5.00 M. The dashed horizontal 

lines represent the equilibrium potentials (Ee) for the transformation of metallic iron to Fe3O4 (-

0.851 V) and the oxidation of Fe(OH)2 to α-Fe2O3 (-0.755 V) calculated from the Nernst equation 

at a pH of 8.9. The equilibrium for the oxidation of Fe(OH)2 to α-Fe2O3 was chosen as it 

represents the lowest potential at which an FeIII oxide can be thermodynamically expected. 

Subsequently, this equilibrium will be designated FeII ox ⇌ FeIII ox, since, as will be shown, a 

wide range of FeIII oxides and oxyhydroxides can form. Figure 4-2 shows the RP values recorded 

during the ECORR experiments.  

It is evident from Figure 4-1 that the ECORR values for the two lower [Cl-] experiments are lower 

than the values recorded in 5.0 M. For the two lower [Cl-], the ECORR values suggest that the 

surface oxide may be predominantly Fe3O4 with little conversion to FeIII oxides. Figure 4-2 shows 

the RP values recorded in the [Cl-]=0.01 solution remain approximately constant at 20 kΩcm2, 

indicating a relatively high constant corrosion rate, while the ECORR values are slightly erratic, 

suggesting minor corrosion events occur on the electrode surface. For [Cl-]=1.00 M, RP decreases 

slightly from 30 kΩcm2 to 20 kΩcm2 over the duration of the experiment as ECORR rises from -

0.820 V to -0.795 V. This combination of an increasing corrosion rate (α RP
-1) and ECORR suggests a 

slight acceleration of the cathodic reaction, likely caused by H2O reduction on a surface oxide 

layer expected to be Fe3O4.  

For the three experiments in [Cl-]=5.00 M solutions, ECORR initially ranges between -0.780 V and -

0.760 V. These values approach the (𝐸𝑒)𝐹𝑒𝐼𝐼 𝑜𝑥/𝐹𝑒𝐼𝐼𝐼 𝑜𝑥 boundary. Over the first 2 days of 

exposure, the RP values are similar in all three experiments suggesting similar corrosion 

behaviour. For experiments #2 and #3 RP increases in a similar manner over the first six days. 

The increase in the ECORR compared to the low [Cl-] solutions could reflect slight differences in 

the dissolved [O2] of the solution. However, the more positive ECORR values are accompanied by a 

significant increase in the RP values, suggesting a less reactive surface. One possibility is that the 
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high [Cl-] leads to Cl- adsorption and an accelerated conversion of FeII to FeIII in the oxide surface. 

The steady increase in RP in experiment #2 suggests a slow passivation of the steel surface, 

consistent with a slow oxidation due to reaction with O2. After 11 days ECORR increases by ~15-20 

mV to a value close to the (𝐸𝑒)𝐹𝑒𝐼𝐼 𝑜𝑥/𝐹𝑒𝐼𝐼𝐼 𝑜𝑥 boundary leading to a marked increase in RP. This 

behaviour is consistent with the suppression of the anodic reaction by the formation of an 

insulating FeIII oxide. Subsequently, around ~13 days both ECORR and RP decrease, indicating a 

slight reactivation of the anodic reaction most likely caused by the local breakdown of the 

passivating FeIII oxide. The small decrease in RP suggests any breakdown locations were only 

moderately active or few in number. This apparent passive film breakdown and onset of 

localized corrosion occurs when ECORR reaches the equilibrium line for the FeII ox/FeIII ox 

transformation.  

 

Figure 4-1: Corrosion potentials (ECORR) measured in solutions containing various [Cl-]. Dashed 

lines represent the thermodynamic boundaries for the oxidation of Fe to Fe3O4 and Fe(OH)2 to α-

Fe2O3. The latter equilibrium is subsequently designated FeII ox/FeIII ox. 
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In experiment #1, ECORR increased more rapidly to values more positive than (𝐸𝑒)𝐹𝑒𝐼𝐼 𝑜𝑥/𝐹𝑒𝐼𝐼𝐼 𝑜𝑥. 

Over this initial 3 day period RP values are close to those observed in the other two experiments 

in 5.0 M Cl- solution. However, after ~3 days, a major ECORR transient is observed leading to a 

significant decrease in RP. Similar major events occur after ~6 and 7 days, Figure 4-3, each with 

sudden increases in ECORR accompanied by a decrease in RP (increase in corrosion rate) 

suggesting a breakdown of the FeIII passivating oxide, formed as ECORR increased to and exceeded 

(𝐸𝑒)𝐹𝑒𝐼𝐼 𝑜𝑥/𝐹𝑒𝐼𝐼𝐼 𝑜𝑥, leading to high corrosion rates at local breakdown sites. The subsequent 

decrease in ECORR is not accompanied by a change in RP (e.g., over the time period 3 to 6 days) 

consistent with the maintenance of a high localized corrosion rate in response to the evolution 

of conditions within the breakdown site(s). The subsequent events occurring after 6.5 and 7 

days (lines (b) and (c), Figure 4-3) lead to further minor decreases in RP confirming the onset of 

localized corrosion at sites which do not subsequently repair. The magnitude and number of 

such events in experiment #1 compared to experiment #2 and the much lower RP values indicate 

highly active localized corrosion in the first case.  

 

Figure 4-2: Polarization resistance (RP) measurements for solutions containing various [Cl-] as 

given in Figure 4-1. 
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Figure 4-3: Corrosion potential (ECORR) and polarization resistance (RP) measurements recorded in 

the [Cl-]=5.00 M (#1) solution. 

4.3.1.2. Raman Spectroscopy 

Figure 4-4(a) shows Raman spectra recorded on various locations on the steel surface after 

exposure to the [Cl-]=0.01 M solution. Spectrum (1), recorded on the corrosion product deposit, 

suggests the presence of green rust (GR), with minor bands at 425 and 506 cm-1 assigned to the 

Fe2+―OH and Fe3+―OH stretching modes of the green rust structure [20-26]. Since Cl- is the only 

anion present, the coordinating interlayer anion of the GR will be either Cl-, with the idealized 

structure [𝐹𝑒3
𝐼𝐼𝐹𝑒𝐼𝐼𝐼(𝑂𝐻−)8]+[𝐶𝑙 ∙ 𝑛𝐻2𝑂]−, or OH- with the structure 

[𝐹𝑒(1−𝑥)
𝐼𝐼 𝐹𝑒𝑥

𝐼𝐼𝐼(𝑂𝐻−)2]
𝑥+

[𝑥𝑂𝐻− ∙ (1 − 𝑥)𝐻2𝑂]𝑥− [27-29]. Differentiating between the two is 

difficult since both exhibit Raman bands in the 200-250 cm-1 region. The presence of minor 

amounts of GR can be attributed to a slight ingress of O2 into the electrochemical cell from the 

surrounding air environment.  
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The Raman band at 673 cm-1 in spectra (2) and (3) is attributed to the A1g mode of Fe3O4 [3, 20, 

23, 24, 26, 30-37]. The formation of Fe3O4 indicates the dominance of anoxic corrosion via H2O 

reduction, confirming that only traces of dissolved O2 were present in this experiment, 

consistent with the measured ECORR (Figure 4-1) which was well below the (𝐸𝑒)𝐹𝑒𝐼𝐼 𝑜𝑥/𝐹𝑒𝐼𝐼𝐼 𝑜𝑥 

boundry, making Fe3O4 the expected phase. The large intensity and the sharpness of the peaks 

indicate the Fe3O4 film is crystalline and relatively thick. The absence of FeIII oxides indicates that 

the Cl- catalyzed oxidation of the FeII film is minimal at this low [Cl-], at least after only 15 days of 

exposure.  

 

Figure 4-4: Ex-situ Raman spectra (1-7) recorded at various locations on the steel surface after 

exposure to (a) [Cl-]=0.01 M and (b) [Cl-]=1.00 M. 
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Figure 4-4(b) shows the Raman spectra recorded on various locations on the steel surface 

exposed to the [Cl-]=1.00 M solution. The peaks located at 248 and 376 cm-1 (spectra 4-6) 

confirm the presence of lepidocrocite (γ-FeOOH) [20, 22, 26, 30, 34, 38-42], with the peak at 671 

cm-1 (spectra 4, 5) attributed to Fe3O4. The presence of both γ-FeOOH and Fe3O4 suggests a 

surface partially oxidized by reaction with dissolved O2, but not passivated, as expected given 

the low ECORR and small RP values. It is possible that the oxidation of FeII to FeIII in the surface of 

the corrosion product film occurs more rapidly at this higher [Cl-]. Spectrum (7) shows peaks at 

317, 422, 508, and 723 cm1 attributable to akaganeite (β-FeOOH) which is known to form on 

archaeological artefacts corroded in Cl- containing soils [31]. However, maghemite (γ-Fe2O3) also 

exhibits broad peaks at 350, 500, and 700 cm-1 [22, 30, 32, 43]. Given the relatively high [Cl-], β-

FeOOH appears to be the most likely phase. The broad bands at low Raman shifts and the 

presence of a broad band in the region of 1270 to 1690 cm-1 (attributable to carbonaceous 

residues at a corroded site) indicate this was a slightly more corroded location covered with a 

poorly crystalline deposit.  

Figure 4-5 shows the Raman spectra recorded on the coupons corroded in each of the three [Cl-

]=5.00 M solutions. All three spectra recorded after experiment #1 exhibit peaks at 243 and 378 

cm-1 indicating the formation of γ-FeOOH, Figure 4-5(a). The band at 659 cm-1 in (1) could be due 

to either γ-FeOOH or Fe3O4. While the accepted location for the main band of Fe3O4 is closer to 

670 cm-1, several studies have seen this characteristic Fe3O4 peak at Raman shifts as low as 661 

cm-1 [30, 35, 40]. However, the clear presence of bands for γ-FeOOH in all three spectra suggests 

the band at 659 cm-1 can also be attributed to γ-FeOOH. The broad peaks at 726 and 722 cm-1 in 

spectra (2) and (3) are more difficult to assign since β-FeOOH (720 cm-1) [22, 31, 44, 45], γ-Fe2O3 

(700-710 cm-1) [22, 30, 32, 43], and ferrihydrite (680 cm-1 to 720 cm-1) [20, 25, 26, 35, 46] all 

have peaks in this region. Given the high [Cl-] and the minor peak at ~300 cm-1 [31, 44, 45] 

(spectrum 3) β-FeOOH seems the most probable phase. The two broad peaks between 1270-

1700 cm-1 can be attributed to Fe3C residues after dissolution of α-Fe from pearlite grains in the 

steel [3, 33], and suggests that spectrum (3) was recorded on a more heavily corroded location 

on the surface. The universal presence of γ-FeOOH and β-FeOOH is consistent with the presence 

of an FeIII surface layer expected at the positive value of ECORR measured in this solution (Figure 

4-1). The positive ECORR and major localized events, leading to low RP values, observed in this 

experiment are consistent with the general surface coverage by FeIII oxide/hydroxide.  
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Figure 4-5: Ex-situ Raman spectra (1-11) recorded at various locations on the steel surface after 

exposure to [Cl-]=5.00 M environments. 

Spectra (4), (5), and (6) recorded after exposure to [Cl-]=5.00 M (#2), Figure 4-5(b), were 

recorded on areas of the surface covered by a uniform corrosion film; i.e. not exhibiting 

significant deposits.  The Raman band at 667 cm-1 and the very broad weak band in the 1300 to 

1600 cm-1 region indicate a thin layer of Fe3O4 over a slightly corroded surface. Also, the 

suggestion of bands in the 200 to 400 cm-1 range would be consistent with oxidation of the 

outer layers of this Fe3O4 layer to an FeIII state as expected at the positive ECORR achieved. The 

peaks at 289 and 415 cm-1 in spectrum (7), recorded on a location covered by a deposit 

(suggesting localized corrosion) are difficult to assign, although only FeIII oxides generally exhibit 

Raman bands in this spectral region. Raman bands located at 410 and 425 cm-1 have been 
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assigned to Fe(OH)2 [22], which is known to form as a precursor to other iron oxides. While the 

deposit cannot be identified, the Fe3C signature in the region 1175-1650 cm-1 suggests more 

extensive corrosion at this location than observed at locations (4) to (6). The background 

fluorescence can be attributed to electronic excitation of the exposed metal surface. The 

apparent dominance of Fe3O4 with a slightly oxidized surface indicates that the large increase in 

the RP, Figure 4-2, can be attributed to a slow passivation process to produce a thin layer 

difficult to detect by Raman spectroscopy. The spectra recorded on the surface of the specimen 

exposed in experiment #3, Figure 4-5(c), show similar peaks to those observed in both 

experiments #1 and #2 with large areas of the surface covered by a thin Fe3O4 film, possibly with 

a slightly oxidized surface (spectra 8 to 10), and some areas more heavily corroded and covered 

by FeIII oxyhydroxide deposits (spectrum (11)).  

Table 4-1: Summary of corrosion products identified by Raman spectroscopy in the range of 

chloride environments investigated 

Oxide Phase 0.01 M 1.00 M 5.00 M (#1) 5.00 M (#2) 5.00 M (#3) 

Fe3O4      

GR      

β-FeOOH      

γ-FeOOH      

α-Fe2O3      

γ-Fe2O3      

4.3.1.3. Scanning Electron Microscopy on surfaces and cross-sections prepared by 

Focused Ion Beam Milling 

Figure 4-6 shows SEM micrographs recorded on the steel surface after 15 days exposure in [Cl-

]=0.01 M. The low magnification image indicates the surface is relatively uncorroded, Figure 

4-6(a), but higher magnification indicates corrosion has occurred on a minor scale, Figure 4-6(c). 

Corrosion is non-uniform with partially detached layers and a scattered deposit. The 

micrographs do not reveal deposits with a morphology indicating the presence GR(Cl-) (observed 

in the Raman spectra) suggesting only minimal amounts are present. Also, very little evidence of 

localized corrosion is observed despite the fluctuations in ECORR and to a lesser degree RP. This is 
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consistent with the Raman evidence, Figure 4-4(a), and indicates the surface is generally 

covered by only a thin surface layer of Fe3O4.    

SEM micrographs after 13 days exposure to the [Cl-]=1.00 M solution are shown in Figure 4-7. 

The visibility of polishing lines, Figure 4-7(a), confirms only a very thin surface film is present. 

This is confirmed by FIB cross-sections cut through these locations (Figure 4-8) and consistent 

with the low value of ECORR, Figure 4-1. The fine structure of the general surface is shown in 

Figure 4-7(b), and is likely a mix of Fe3O4 and γ-FeOOH based on the Raman analyses, consistent 

with some surface oxidation due to the presence of traces of dissolved O2. Figure 4-7(c) shows 

the morphology of small deposits seen in several locations. Cross-sectional analysis through one 

of these deposits is shown in Figure 4-9. The magnified image, Figure 4-9(b), shows that the 

deposit is porous, possibly exposing the base metal, but that no significant localized corrosion 

has occurred. The Raman spectrum (7 in Figure 4-4(b)) confirms such locations are more heavily 

corroded and covered with deposited akaganeite, β-FeOOH.  

 

Figure 4-6: SEM micrographs showing the morphology of the corrosion product after exposure to 

the solution containing [Cl-]=0.01 M. 

 

Figure 4-7: SEM micrographs showing the morphology of the corrosion product after exposure to 

the solution containing [Cl-]=1.00 M. 



www.manaraa.com

91 
 

 

 

Figure 4-8: FIB cross-sections for the general corrosion film on the steel exposed to [Cl-]=1.00 M. 

 

Figure 4-9: FIB cross-sections for corrosion deposits formed on the steel surface exposed to [Cl-

]=1.00 M. 

Figure 4-10 shows the SEM micrographs recorded after exposure to [Cl-]=5.00 M (#1). These 

images are consistent with the electrochemical observations which show a positive ECORR and a 

number of potential transients indicating either individually large or a large number of localized 

corrosion sites on a generally passive surface, Figure 4-10(a). The clear visibility of the polishing 

lines confirms the general surface is passivated by a thin film. The accumulation of corrosion 

product seen at local sites, Figure 4-10(b), and a FIB cross-section through such a deposit, Figure 

4-11(a), confirms that the deposits are located over shallow pits on the steel surface which the 

low RP values (Figure 4-2) show remain active over the ensuing exposure period. Figure 4-11(b) 

and (c) show additional FIB cross-sections through a second active location with the 
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backscattered electron image, Figure 4-11(c), more clearly outlining the interface between the 

base metal and deposited corrosion product. Again, pitting beneath such a deposit is shallow.  

Figure 4-12 shows the SEM micrographs recorded after 15 days of exposure to the [Cl-]=5.00 M 

(#2) environment. The surface is generally featureless, Figure 4-12(a), with some minor localized 

corrosion events which are much less frequent than in experiment #1. This is consistent with the 

noiseless ECORR and steady increase in RP prior to the minor breakdown events which occur after 

~11 days of exposure (Figure 4-1 and Figure 4-2). The strong Raman signal for residual Fe3C, 

spectrum (7) in Figure 4-5, is most likely recorded on such a region. Figure 4-12(b) shows the 

morphology of the general surface film, seen as darker regions in Figure 4-12(a), which Raman 

analysis indicates is Fe3O4. The observation of Fe3O4 coupled with an ECORR which approaches the 

(𝐸𝑒)𝐹𝑒𝐼𝐼 𝑜𝑥/𝐹𝑒𝐼𝐼𝐼 𝑜𝑥 boundary indicates oxidation of the outer surface of the Fe3O4 consistent 

with the large RP values recorded. The relatively small drop in the RP compared to that recorded 

in [Cl-]=5.00 M (#1) can be attributed to the much smaller density of film breakdown locations 

and their limited propagation which is confirmed by the absence of the large events shown to 

occur in experiment (#1). It is possible this is due to a lower O2 concentration in this experiment. 

SEM micrographs recorded in the shorter experiment (#3) in [Cl-]=5.00 M (Figure 4-13) exhibit 

similar features to those observed in the [Cl-]=1.00 M experiment  which are comprised of a thin 

layer which the Raman analysis suggests is Fe3O4, Figure 4-13(b), and a fine corrosion deposit, 

Figure 4-13(c), which appears to be a  mixture of α-Fe2O3 and γ-Fe2O3. The yellow/orange colour 

of the deposit supports this phase assignment.  

 

 

Figure 4-10: SEM micrographs showing the morphology of the corrosion product after exposure 

to the [Cl-]=5.00 M (#1) solution. 
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Figure 4-11: FIB cross-sections through corrosion deposit accumulations on the steel exposed to 

[Cl-]=5.00 M (#1). 

 

 

Figure 4-12: SEM micrographs showing the corrosion product morphology after exposure to [Cl-

]=5.00 M (#2).  

 

 

Figure 4-13: SEM micrographs showing the corrosion product morphology after exposure to [Cl-

]=5.00 M (#3). 
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4.3.1.4. Cyclic Voltammetry 

Figure 4-14(a) shows a series of CVs recorded to increasing anodic limits in the [Cl-]=0.01 M 

solution. Since the linear increase in current with potential indicates an ohmic effect due to low 

solution conductivity the experiment was repeated at an increased ionic strength by adding 0.10 

M NaClO4, Figure 4-14(b). The vertical lines indicate the range of ECORR values measured in the 

corrosion experiment, Figure 4-1, and show ECORR was located at the base of the active 

dissolution region. The current increases at more positive potentials and shows no tendency to 

passivate confirming that, under voltammetric conditions, active dissolution occurs. The low RP 

values, Figure 4-2, confirm that passivation did not occur in this experiment.  

 

Figure 4-14: Cyclic voltammograms recorded to increasing anodic limits on steel coupons 

exposed to (a) [Cl-]=0.01 M; (b) [Cl-]=0.01 M & [ClO4
-]=0.10 M; (c) [Cl-]=1.00 M; and (d) [Cl-]=5.00 

M. Dashed vertical lines represent the range of ECORR measured during the corrosion experiments. 
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For [Cl-]=1.00 M, (Figure 4-14(c)) ECORR values are again at the foot of the active dissolution 

curve, while for [Cl-]= 5.00 M, Figure 4-14(d), the onset of active dissolution is significantly 

suppressed. This is best appreciated by comparing the anodic currents at -0.7 V for the three Cl- 

solutions. For 0.01 M and 0.1 M the current is approximately the same, but for 5.00 M it is 

considerably lower. This shift of active dissolution to more positive potentials is consistent with 

the claim that, in the corrosion experiments the surface can be initially stabilized against active 

dissolution by the catalyzed oxidation of the surface by traces of O2 when [Cl-] is high. A surface 

stabilized in this manner would then be more susceptible to the breakdown processes observed 

at this [Cl-]. These results are consistent with previous work performed by Lee at al. [4] which 

showed that Cl- was able to suppress the anodic reaction of Fe to Fe2+.  

4.3.2. Effects of Carbonate 

4.3.2.1. ECORR and RP Measurements 

Since specimens exposed to [Cl-]=5.00 M exhibited the highest ECORR values and are the most 

likely to exhibit localized corrosion, the influence of [HCO3
-/CO3

2-] was examined at this [Cl-]. The 

observation of shallow pits clearly indicated pit initiation occurred in the concentrated Cl- 

solution in the absence of any buffer capacity. Hydrolysis of Fe2+ produced by active dissolution 

at local sites would lead to the increase in local acidity required to maintain active propagation 

providing some O2 remained available. Here, the influence of added HCO3
-/CO3

2- on the pitting 

process is investigated.  

Figure 4-15 shows ECORR values recorded over an 11-13 day exposure period to deaerated 5.00 M 

Cl- solutions containing two different HCO3
-/CO3

2- concentrations. The dashed horizontal lines 

show the 𝐸𝑒 for the oxidation of Fe to Fe3O4 (-0.851 V) and the (𝐸𝑒)𝐹𝑒𝐼𝐼 𝑜𝑥/𝐹𝑒𝐼𝐼𝐼 𝑜𝑥 boundary (-

0.755 V). When [HCO3
-/CO3

2-]T=0.001 M, ECORR initially achieves a value in the range of -0.760 V, 

as observed in [Cl-]=5.00 M (Figure 4-1), suggesting the formation of a surface oxide with a high 

FeIII content. Both ECORR and RP (Figure 4-16) values follow the same trend as observed in the 

absence of HCO3
-/CO3

2- (Figure 4-1 and Figure 4-2), with RP increasing as ECORR increases, 

consistent with a slow passivation of the surface by traces of dissolved O2. The transients in ECORR 

indicate many attempts to initiate localized corrosion sites which lead to erratic RP values. 

However, the establishment of stable active locations leading to a permanent decrease in RP, as 

observed in the absence of HCO3
-/CO3

2-, (Figure 4-1 and Figure 4-2) is not observed. This could 
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be attributed to the ability of the HCO3
-/CO3

2- to buffer, at least partially, the attempted increase 

in acidity caused by Fe2+ hydrolysis at breakdown sites, which allows repassivation to occur.  

For both experiments at the higher [HCO3
-/CO3

2-]T=0.01 M, ECORR and RP behave almost 

identically, lower steady values of ECORR being observed and only a slow increase in RP occurring. 

As expected at lower ECORR values, local film breakdown events were not observed. While ECORR 

remains steady over the course of the experiments, the RP values are seen to rise slowly 

indicating a slow reaction with O2 which could eventually lead to passivation. The lower values 

of RP compared to those observed at the lower [HCO3
-/CO3

2-]T indicate that the passivation of 

the surface either did not occur or did not progress to the same extent. This, along with the 

lower ECORR, suggests the surface film is likely Fe3O4 rather than an FeIII oxide.  

 

 

Figure 4-15: Corrosion potentials (ECORR) for solutions in [Cl-]=5.00 M containing HCO3
-/CO3

2- at 

concentrations of 0.001 M and 0.01 M. Dashed horizontal lines represent the thermodynamic 

boundaries for the oxidation of Fe to Fe3O4 and Fe(OH)2 to α-Fe2O3. 
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Figure 4-16: Polarization resistance (RP) measurements for solutions containing [Cl-]=5.00 M and 

HCO3
-/CO3

2- at concentrations of 0.001 M and 0.01 M as given in Figure 4-15. 

Figure 4-17 and Figure 4-18 show the ECORR and RP values measured in [HCO3
-/CO3

2-]T=0.10 M. 

The transient behaviour of ECORR, designated by the dashed vertical lines in both Figure 4-17 and 

Figure 4-18, can be attributed to unintended variations in dissolved O2 content in the system. 

Within the various time periods shown both ECORR and RP increase as the glass frit in the tip of 

the gas sparging tube became clogged with precipitate formed in the extremely concentrated 

solution. This allowed the slow ingress of O2. The dashed lines show the times at which the tube 

was replaced and Ar-sparging re-established which lead to a decrease in both ECORR and RP.  

These excursions are consistent with changes in the kinetics of the anodic reaction; i.e., the 

corrosion rate decreases (RP increases) as ECORR increases, indicating the slow leakage of O2 into 

the cell leading to oxidation of the surface to FeIII and partial passivation. On re-establishing Ar-

sparging the process is reversed and the corrosion rate increases as ECORR is decreased. The 

increase in corrosion rate on depletion of O2 indicates a loss of passivity (only partially 

established in this case) and the adoption of H2O reduction as the cathodic reaction. This, and 
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the low ECORR values (<-0.80 V) maintained under Ar-sparged conditions, indicate that at a high 

[HCO3
-/CO3

2-]T active dissolution conditions are maintained by the ability of HCO3
-/CO3

2- to 

complex Fe2+.  

 

 

Figure 4-17: Corrosion potential (ECORR) (solid line) and polarization resistance (RP) (points) values 

recorded in [Cl-]=5.00 M and [HCO3
-/CO3

2-]=0.10 M (#1). The dashed vertical lines indicate points 

at which the Ar sparging system needed to be replaced due to precipitate build-up. 
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Figure 4-18: Corrosion potential (ECORR) (solid line) and polarization resistance (RP) (points) values 

recorded in [Cl-]=5.00 M and [HCO3
-/CO3

2-]=0.10 M (#2). The dashed vertical lines indicate points 

at which the Ar sparging system needed to be replaced due to precipitate build-up 

4.3.2.2. Raman and Infrared Spectroscopies 

Figure 4-19(a) shows Raman spectra recorded on various surface locations after exposure to the 

[HCO3
-/CO3

2-]T=0.001 M solution. Spectra (1), (2), and (3) indicate the presence of green rust 

(GR), with the bands at 427 and 510 cm-1 assigned to the Fe2+―OH and Fe3+―OH stretching 

modes of the green rust structure. The composition of the solution suggests the coordinating 

anion in the GR interlayers could be OH-, Cl-, or CO3
2-. Both CO3

2- and Cl- anions have been 

reported to generate peaks around ~220 cm-1 [21, 24], and either of these anions may be 

incorporated within the GR structure, although it has been noted that GR has a preference for 

incorporating CO3
2-. The Raman band located at 674 cm-1 in each of the four spectra for [HCO3

-

/CO3
2-]T=0.001 M is attributed to the A1g mode of Fe3O4 while the band at 300 cm-1 in spectrum 

(4) is attributed to a t2g mode of Fe3O4 [30, 32, 36]. The Raman band located at 405 cm-1 remains 
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unassigned. Despite ECORR approaching the (𝐸𝑒)𝐹𝑒𝐼𝐼 𝑜𝑥/𝐹𝑒𝐼𝐼𝐼 𝑜𝑥 boundary when the outer surface 

might be expected to be oxidized to FeIII, this is not supported by the Raman data.  

 

Figure 4-19: Ex-situ Raman spectra (1-12) recorded at various locations on the steel surface after 

exposure to 5.0 M Cl- solutions containing (a) [HCO3
-/CO3

2-]=0.001 M; and (b-c) [HCO3
-/CO3

2-

]=0.01 M. 

Figure 4-19(b) shows the Raman spectra recorded on various locations on the surface after 

exposure to the [HCO3
-/CO3

2-]T=0.01 M (#1) solution. The Raman bands located at 249 and 378 

cm-1 in spectra (5), (6), and (7) indicate the presence of γ-FeOOH. Given the value of ECORR this 

suggests some surface oxidation has occurred. The Raman bands seen in spectrum (8) are 

difficult to assign but the general shape and the position of the bands are consistent with the 
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spectra observed at locations which have experienced localized corrosion to yield a poorly 

crystalline FeIII deposit (peaks in the range < 800 cm-1) over a more extensively corroded location 

(peaks within the region 1200-1700 cm-1), Figure 4-4(b) and Figure 4-5(a) and (c).  

The single Raman band seen at 673 cm-1 in Figure 4-19(c) for [HCO3
-/CO3

2-]T=0.01 M (#2) shows 

Fe3O4 is the dominant phase which is not unexpected at the low values of ECORR measured in this 

experiment, Figure 4-15. The single peak in each of the spectra indicates that the surface is 

uniformly covered in Fe3O4. The relatively low intensity of the broad bands suggests the film is 

very thin, which is not unexpected after a 6 day exposure period.  

Figure 4-20(a) shows the Raman spectra recorded on various locations after exposure to the 

[HCO3
-/CO3

2-]T=0.10 M (#1) solution. The band at 663 cm-1 (spectrum (3)) can be attributed 

Fe3O4, which is not unexpected since the ECORR in the electrochemical experiment was low. The 

bands located at 380 and 722 cm-1 are more difficult to assign but are attributable to FeIII 

phases. Their breadth and the broad band located in the region 1200-1700 cm-1 indicates a 

deposit-covered corroded location. The Raman band at 1070 cm-1 is attributed to the ν1 C–O 

symmetric stretching of a coordinated CO3
2- species [20, 47, 48]. For spectra (1) and (2) there is 

no other detectable Raman bands suggesting that while the CO3
2- component of the film is 

clearly seen, the remainder of the structure is not Raman active. Figure 4-21 shows two FTIR 

spectra recorded at different locations on the sample surface. While the corrosion deposit in 

these regions may not be fully Raman active, the clear IR active spectra indicate the presence of 

chukanovite (Fe2(OH)2CO3) [49, 50]. The peaks at ~780 cm-1, ~840 cm-1  and  ~950 cm-1 can be 

attributed to the ν4 in-plane bending of CO3
2-, the ν2 out of plane bending of CO3

2-, and the δ-OH 

bending mode, respectively. The peaks centered over 1350-1520 cm-1 are due to C–O stretching 

while those in the range 3300-3475 cm-1 are due to O–H stretching. Both the Raman and FTIR 

analyses show the surface of the coupon exposed to [HCO3
-/CO3

2-]T=0.10 M (#1) is largely 

covered by a film of Fe2(OH)2CO3 with a small amount of detectable Fe3O4 and possibly an FeIII 

oxide such as β-FeOOH or γ-Fe2O3.  

The Raman spectra recorded on various locations on the steel coupon exposed to [HCO3
-/CO3

2-]T-

=0.10 M (#2) are shown in Figure 4-20(b), the Raman band at 674 cm-1 confirming presence of 

Fe3O4. Despite the similarity in ECORR and RP values in experiments #1 and #2 (Figure 4.21 and 

Figure 4.22) no Fe2(OH)2CO3 is observed in experiment #2, suggesting the iron carbonate phase 

is precipitated only after extensive exposure. The two Raman bands seen within spectrum (7) at 
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326 and 425 cm-1 are not readily assigned. Table 4-2 summarizes the surface species detected by 

Raman spectroscopy on the steel coupons corroded in each of the HCO3
-/CO3

2- exposure 

environments. 

 

 

Figure 4-20: Ex-situ Raman spectra (1-7) recorded at various locations on the steel surface after 

exposure to 5.0 M Cl- solutions containing [HCO3
-/CO3

2-]=0.10 M. 
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Figure 4-21: Ex-situ FTIR spectra recorded at two locations on the steel surface after exposure to 

a 5.0 M Cl- solution with [HCO3
-/CO3

2-]=0.10 M (#1). 

 

Table 4-2: Summary of corrosion products identified by Raman spectroscopy for HCO3
-/CO3

2- 

containing exposure environments. 

Oxide Phase 0.001 M 0.01 M (#1) 0.01 M (#2) 0.10 M (#1) 0.10 M (#2) 

Fe3O4      

GR      

β-FeOOH      

γ-FeOOH      

Fe2(OH)2CO3      
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4.3.2.3. Scanning Electron Microscopy 

Figure 4-22 shows the SEM micrographs recorded after 11 days of exposure in the [HCO3
-/CO3

2-

]T=0.001 M solution. The surface is covered by deposits suggesting the occurrence of many 

localized corrosion events, Figure 4-22(a), consistent with the erratic values of ECORR. The large 

values of RP indicate that such locations repassivated due to the formation of FeIII 

oxide/hydroxide deposits, Figure 4-22(b-c), assigned as GR by Raman analyses. The thin 

platelets, Figure 4-22(d-f) are deposited on relatively uncorroded areas of the surface which 

Raman analyses show is Fe3O4.   

 

Figure 4-22: SEM micrographs showing the corrosion product morphology after exposure to a 

5.0 M Cl- solution containing [HCO3
-/CO3

2-]=0.001 M. 

The SEM micrographs recorded on the steel surface after 13 days exposure to the [HCO3
-/CO3

2-]T-

=0.01 M (#1) exposure environment, Figure 4-23, show only the presence of a thin surface film 

with no deposits indicating pitting as expected given ECORR was low (-0.800 V) and exhibited no 

breakdown transients. The fine structured minor deposit appears to be γ-FeOOH, Figure 4-23(c). 

SEM images recorded after exposure to the [HCO3
-/CO3

2-]T=0.01 M (#2) solution show similar 

features, but fewer deposited crystals consistent with the Raman analyses indicating the 

dominant presence of Fe3O4.  
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SEM micrographs recorded on the steel surface after 15 days exposure to the [HCO3
-/CO3

2-]T-

=0.10 M (#1) solution are shown in Figure 4-24. Most of the surface is covered with a thin 

featureless film, Figure 4-24(a), with patches of thin platelets shown in more detail in Figure 

4-24(b). The thin featureless area is consistent with the presence of Fe3O4, as indicated by the 

Raman analyses. The thin platelets, Figure 4-24(b), show the morphology expected for the 

Fe2(OH)2CO3 detected by FTIR [50-53]. In these experiments, the periodic loss of Ar-sparging 

lead to localized corrosion sites generally covered by Fe2(OH)2CO3 showing that at such a high 

[HCO3
-/CO3

2-] dissolution occurred mainly as Fe2+ which redeposited rather than being further 

oxidized to produce FeIII compounds. Although not shown, similar surface features were 

observed in the second experiment at this [HCO3
-/CO3

2-].  

 

 

Figure 4-23: SEM micrographs showing the corrosion product morphology after exposure to a 

5.0 M Cl- solution containing [HCO3
-/CO3

2-]=0.01 M (#1). 

 

 

Figure 4-24: SEM micrographs showing the corrosion product morphology after exposure to a 

5.0 M Cl- solution containing [HCO3
-/CO3

2-]=0.10 M (#1). 
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4.3.2.4. Cyclic Voltammetry 

Figure 4-25(a) shows CVs recorded in 5.00 M NaCl solutions containing 0.01 M and 0.20 M 

[HCO3
-/CO3

2-]. A number of features are clear: 

(i) The current for the cathodic reaction is higher at the higher [HCO3
-/CO3

2-] which can 

be attributed to the reduction of protons supplied by the dissociation of HCO3
-.  

(ii) The anodic current in the region of the peak is increased, confirming that dissolution 

as Fe2+ is accelerated by carbonate complexation as Fe(CO3)2
2-.  

(iii) The current on the reverse scan is revived in the potential range within which the 

anodic peak occurs at the higher [HCO3
-/CO3

2-] indicating that the formation of a 

passive oxide is inhibited by HCO3
-/CO3

2-.  

Figure 4-25(b) shows the anodic peak currents recorded at -0.700 V (indicated by the vertical 

line in (a)) as a function of [HCO3
-/CO3

2-] in 1.00 M and 5.00 M NaCl solutions. In both cases an 

increase in [HCO3
-/CO3

2-]T causes an increase in anodic current although the influence of HCO3
-

/CO3
2- is suppressed at the higher [Cl-].  

Figure 4-25(c) shows the anodic polarization scans recorded in 5.00 M Cl- extended until a sharp 

increase in current indicated passive film breakdown. Figure 4-25(d) shows the breakdown 

potentials as a function of [HCO3
-/CO3

2-] for both [Cl-]. The values of the breakdown potentials 

were obtained by extrapolating the linear region of the active dissolution current back to the 

potential axis. For both [Cl-] the breakdown potential increases with [HCO3
-/CO3

2-], and for 

[HCO3
-/CO3

2-] > 0.05 M are more positive at the lower [Cl-]; i.e., film breakdown is suppressed by 

HCO3
-/CO3

2- but less so at the higher [Cl-]. It is noteworthy that this is the opposite of what was 

observed in exposure environments containing only Cl- when the onset of active dissolution was 

delayed at higher [Cl-]. 
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Figure 4-25: (a) Cyclic voltammograms starting at a potential of -1.1 V recorded on steel in a [Cl-

]=5.00 M solution containing either 0.01 M or 0.20 M HCO3
-/CO3

2-; (b) anodic currents at -0.7 V 

as a function of [HCO3
-/CO3

2-]; (c) anodic polarization scans starting at a potential of -1.1 V 

recorded up to the onset of film breakdown in a [Cl-]=5.00 M solution containing increasing 

[HCO3
-/CO3

2-]; (d) breakdown potentials as a function of [HCO3
-/CO3

2-]. 
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4.3.3. Effects of Sulphate 

4.3.3.1. ECORR and RP Measurements 

Figure 4-26 shows the ECORR values recorded over exposure periods from 11-35 days in 

deaerated 5.00 M Cl- solutions containing [SO4
2-] ranging from 0.001 M to 0.50 M. The dashed 

horizontal line shows the 𝐸𝑒 for the oxidation of FeII ox to FeIII ox (-0.755 V). Figure 4-27 shows 

the corresponding RP values. At [SO4
2-]=0.001 M, ECORR (~-0.770 V) and RP values are similar to 

those recorded in [Cl-]=5.00 M (#2 and #3), Figure 4-1 and Figure 4-2. In experiments in which 

ECORR increases to > (𝐸𝑒)𝐹𝑒𝐼𝐼 𝑜𝑥/𝐹𝑒𝐼𝐼𝐼 𝑜𝑥 RP increases to values indicating passive conditions. Once 

the Ee is exceeded a high density of metastable transients is observed, indicating localized 

corrosion events. Despite these events the RP values, while becoming erratic, do not decrease to 

< 100 kΩcm2 indicating transient localized corrosion not the establishment of stable propagating 

pits. Similar behaviour is observed at the other [SO4
2-]. If ECORR increased to values close to or 

exceeding  (𝐸𝑒)𝐹𝑒𝐼𝐼 𝑜𝑥/𝐹𝑒𝐼𝐼𝐼 𝑜𝑥, RP increases to values indicating passivity and localized 

initiation/repassivation events are observed. If ECORR does not increase to such positive values 

then RP remains < 100 kΩcm2 and localized corrosion events are avoided. This behaviour can be 

contrasted with that observed in HCO3
-/CO3

2- solutions in which ECORR remains lower and 

localized events are less frequent, Figure 4-15 and Figure 4-16. It is also clear that the trends in 

ECORR and RP are not determined by the [SO4
2-] suggesting that the dominant influence on 

ECORR/RP are traces of dissolved O2 which determine the extent of surface oxidation and, hence, 

whether or not passivation occurs.   

4.3.3.2. Raman Spectroscopy 

Figure 4-28(a) shows the Raman spectra recorded on various locations after exposure to [SO4
2-

]=0.001 M. The absence of significant Raman bands in (1) suggests the presence of an 

undetectably thin or amorphous deposit. Spectra (2) and (3), recorded at locations with visible 

corrosion deposits, exhibit the bands in the range 1200-1500 cm-1 which indicate the presence 

of amorphous carbon residue left behind after dissolution of α-Fe from a pearlite matrix. The 

absence of peaks in the range 700 cm-1 to < 200 cm-1 indicate these corroded locations are not 

associated with identifiable deposits, although optical analysis showed a corrosion product was 

present. This is consistent with the ECORR/RP measurements which indicate the occurrence of 

only metastable local events which would result in only minor corrosion product deposits.  
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Raman spectra recorded on various locations after exposure to [SO4
2-]=0.01 M, Figure 4-28(b), 

show Fe3O4 (667 cm-1) to be present as expected since ECORR did not increase to the 

(𝐸𝑒)𝐹𝑒𝐼𝐼 𝑜𝑥/𝐹𝑒𝐼𝐼𝐼 𝑜𝑥 boundary and RP values remained low. The very shallow band between 1200 

and 1700 cm-1 indicates this Fe3O4 film allows some corrosion of the underlying steel.   

The optical image in Figure 4-29 shows both dark and yellow/orange regions are present on the 

steel surface after exposure to [SO4
2-]=0.10 M (#1). Raman spectra ((1) and (2)) recorded on the 

yellow/orange deposit, Figure 4-30(a), show the bands at 247 and 376 cm-1 associated with γ-

FeOOH. The small broad peak at ~660 cm-1 may indicate a poorly crystalline or thin layer of 

Fe3O4 in the black areas. The presence of areas of FeIII oxides/hydroxides on a generally 

uncorroded surface is consistent with the positive ECORR values and the proliferation of 

metastable events at long exposure times.  

 

Figure 4-26: Corrosion potentials (ECORR) for solutions containing 5.00 M Cl- and various 

concentrations of SO4
2-. The dashed horizontal line represents the thermodynamic boundary for 

the transformation of Fe(OH)2 to α-Fe2O3. 



www.manaraa.com

110 
 

 

 

  

 

 

 

Figure 4-27: Polarization resistance (RP) measurements for solutions containing 5.00 M Cl- and 

various concentrations of SO4
2- as given in Figure 4-26. 
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Figure 4-28: Ex-situ Raman spectra (1-7) recorded at various locations on the steel surface after 

exposure to 5.0 M Cl- solutions with (a) [SO4
2-]=0.001 M; (b) [SO4

2-]=0.01 M. 

In the second shorter experiment in 0.10 M SO4
2- (#2), ECORR remained well below 

(𝐸𝑒)𝐹𝑒𝐼𝐼 𝑜𝑥/𝐹𝑒𝐼𝐼𝐼 𝑜𝑥 and localized corrosion events were avoided, Figure 4-26. The Raman 

spectra, Figure 4-30(b), indicated a Fe3O4 covered surface as expected, although the enhanced 

intensity in the region 200 to 600 cm-1 suggests the presence of some FeIII oxyhydroxides.   

The optical image in Figure 4-31 shows a generally uncorroded surface with a number of small 

locations which are probably pits after exposure to the [SO4
2-]=0.50 M (#1) solution. Spectra (1-

3), Figure 4-32(a), were recorded on the lightly corroded areas of the surface. The Raman bands 

located at 432 and 508 cm-1 are characteristic of the Fe2+―OH and Fe3+―OH stretching modes of 

GR, and given the solution composition ([Cl-]=5.00 M and [SO4
2-]=0.50 M) the interlayer anion 
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will be either Cl- or SO4
2-. The faint Raman band at 982 cm-1 suggests GR(SO4

2-) in this 

experiment. Spectrum (4) was recorded on a more obviously corroded location confirmed by the 

strong, but broad, peak at 1324 cm-1 indicating the presence of residual Fe3C from corroded 

pearlite grains. The peaks in the range ~250 cm-1 to 350 cm-1 can be attributed to FeIII 

oxyhydroxides (most likely α- and γ-FeOOH) which would be expected to accumulate at such 

locations. The absence of Fe3O4 (i.e., a peak at 667 cm-1) confirms this spectrum was recorded 

on a more corroded location.   

Similar behaviour was observed after exposure to [SO4
2-]=0.50 M (#2) although in this 

experiment a peak attributable to Fe3O4 (~666 cm-1) was observed, Figure 4-32(b). The blue 

hued locations in Figure 4-31 appear to be γ-FeOOH. Table 4-3 summarizes the iron oxide 

phases formed in SO4
2- containing exposure environments.  

Table 4-3: Summary of corrosion products identified by Raman spectroscopy for SO4
2- containing 

exposure environments. 

Oxide 
Phase 

0.001 M 0.01 M 0.10 M (#1) 0.10 M (#2) 0.50 M (#1) 0.50 M (#2) 

Fe3O4       

GR       

α-FeOOH       

γ-FeOOH       

 

 

Figure 4-29: Raman optical image recorded on the steel surface exposed to a 5.0 M Cl- solution 

containing [SO4
2-]=0.10 M (#1). Crosshairs indicate location of Raman spectra collection. 
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Figure 4-30: Ex-situ Raman spectra (1-4) recorded at various locations on the steel surface after 

exposure to 5.0 M Cl- solutions containing [SO4
2-]=0.10 M. 

 

Figure 4-31: Raman optical image recorded on the steel surface exposed to a 5.0 M Cl- solution 

containing [SO4
2-]=0.50 M (#1). Crosshairs indicate location of Raman spectra collection. 
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Figure 4-32: Ex-situ Raman spectra (1-9) recorded at various locations on the steel surface after 

exposure to 5.0 M Cl- solutions containing [SO4
2-]=0.50 M. 

4.3.3.3. Scanning Electron Microscopy 

The surface features are similar to those observed in other solutions. If ECORR remains low (-0.770 

V), RP does not increase to very high values, and metastable film breakdown events are avoided 

and corrosion occurs generally with some areas covered with very thin crystalline deposits as 

shown for [SO4
2-]=0.01 M in Figure 4-33. The optical images and the accompanying Raman 

analyses indicate corrosion is not extensive and probably occurs most readily on the pearlite 

grains. In the experiments in which the ECORR becomes very positive and metastable events are 

observed, minor breakdown sites are observed on the surface (not shown). 
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4.3.3.4.   Cyclic Voltammetry 

Figure 4-34 shows two CVs recorded at a high and a low [SO4
2-] in highly concentrated chloride 

solutions of [Cl-]=5.00 M. Figure 4-34(b) shows the currents recorded at -0.700 V taken from the 

voltammograms and shows there is no significant dependence of the anodic dissolution current 

on [SO4
2-] at this potential. For comparison, the influence of [HCO3

-/CO3
2-]T on the current at this 

potential is also shown. The clear influence on the anodic dissolution due to HCO3
-/CO3

2- is not 

observed for SO4
2-. The anodic polarization scans for each [SO4

2-] in [Cl-]=5.00 M, Figure 4-34(c), 

show there is no measurable effect of the SO4
2- on the breakdown potential. Figure 4-34(d) 

compares the breakdown potentials in SO4
2- and HCO3

-/CO3
2- solutions, and shows SO4

2- is more 

effective than HCO3
-/CO3

2- in suppressing breakdown.  

 

 

Figure 4-33: SEM micrographs showing the corrosion product morphology after exposure to a 

5.0 M Cl- solution containing [SO4
2-]=0.01 M. 
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Figure 4-34: (a) cyclic voltammograms recorded for steel exposed to a [Cl-]=5.00 M solution 

containing 0.01 M or 0.20 M SO4
2-; (b) anodic dissolution currents measured at -0.7 V as a 

function of anion concentration; (c) anodic polarization scans recorded up to the onset of film 

breakdown in a [Cl-]=5.00 M solution containing increasing [SO4
2-]; (d) breakdown potentials as a 

function of [SO4
2-] and [HCO3

-/CO3
2-]. 
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4.4. DISCUSSION 

4.4.1. Effects of Chloride 

Electrochemical data showed that as the [Cl-] was increased the values of ECORR and RP generally 

increased. The exception to this observation was the ECORR value for [Cl-]=0.01 M which was 

more positive than for the [Cl-]=1.00 M solution. However, cyclic voltammetry measurements 

revealed that the electrochemistry of this solution was distorted by the low ionic strength in 

such a low [Cl-] solution. The value of ECORR in this solution may reflect this. The tendency for Cl- 

to cause an increase in both ECORR and RP suggests that the Cl- is able to induce passivation of the 

surface by formation of FeIII oxides. This hypothesis is supported by published studies [16, 18, 

54-62]. Based on the mechanism proposed by Weiss [63], Kurimura et al. [56] proposed that the 

oxidation of Fe2+ to Fe3+ could be catalyzed by chelation, 

 𝐹𝑒2+ + 𝑋− ⇌ 𝐹𝑒𝑋+ (4-65) 

 𝐹𝑒𝑋+ + 𝑂2 → 𝐹𝑒𝑋2+ + 𝑂2
− (4-66) 

 

where X- represents the chelating species which can be regenerated via the following 

equilibrium process: 

 𝐹𝑒𝑋2+ ⇌ 𝐹𝑒3+ + 𝑋− (4-67) 

 

The highly reactive O2
- species produced from the  chelation step can then go on to oxidize a 

further three Fe2+ ions to Fe3+.  

 𝑂2
− + 𝐻+ → 𝐻𝑂2 (4-68) 

 𝐹𝑒2+ + 𝐻𝑂2 + 𝐻+ → 𝐹𝑒3+ + 𝐻2𝑂2 (4-69) 

 𝐹𝑒2+ + 𝐻2𝑂2 → 𝐹𝑒3+ + 𝑂𝐻− + 𝑂𝐻 (4-70) 

 𝐹𝑒2+ + 𝑂𝐻 → 𝐹𝑒3+ + 𝑂𝐻− (4-71) 

 

The overall reaction for the oxidation of Fe2+ catalyzed by chelation is then given by: 

 4𝐹𝑒2+ + 2𝐻+ + 𝑂2 → 4𝐹𝑒3+ + 2𝑂𝐻− (4-72) 

 

or, 
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 4𝐹𝑒2+ + 4𝐻+ + 𝑂2 → 4𝐹𝑒3+ + 2𝐻2𝑂 (4-73) 

 

Kurimura et al. [56] state that the acceleration of the oxidation process is due to the 

stabilization of the oxidized form by chelation. If this is the case, the oxidation rate of Fe2+ will 

depend on the complexing affinity of the chelating anion for the Fe3+ state. Acceleration of the 

oxidation of Fe2+ has been shown to increase with increasing [Cl-] [54-59]. Previous work by 

Ulrich and Anson suggests that this acceleration due to chelation could be facilitated by a ligand 

bridging mechanism of adsorbed Cl- as observed for the oxidation of Cr2+ to Cr3+ [64]. In the 

present case the catalysis appears to be a slow surface reaction with an initially formed Fe(OH)2, 

or more likely Fe3O4, surface layer being slowly oxidized on the outer surface to an undefined 

FeIII state. Isostructurally, it is easy to convert Fe3O4 to γ-Fe2O3 suggesting this is the most likely 

product of the Cl- catalyzed oxidation. Any FeIII formed in this manner would be extremely 

insoluble allowing the surface to be slowly passivated as oxidation proceeds.  

Consistent with the need for a high [Cl-] in order to convert the outer layer of Fe3O4 to FeIII oxide, 

only Fe3O4 and traces of GR are observed after corrosion in the 0.01 M Cl- solution and both 

ECORR and RP remain low. It is commonly accepted that the first product of the anaerobic 

corrosion of iron is Fe(OH)2, which, due to its low thermodynamic stability, is subsequently 

converted to magnetite via the Schikorr reaction [3, 7, 23]: 

 3𝐹𝑒(𝑂𝐻)2 → 𝐹𝑒3𝑂4 + 𝐻2 + 2𝐻2𝑂 (4-74) 

 

The presence of both Fe3O4 and GR after corrosion in a low Cl- solution suggests a number of 

possible mechanisms. The GR could have formed by reaction of this Fe(OH)2 with traces of O2. 

Then, since GR is metastable with respect to Fe3O4 at pH values > 5, Fe3O4 could have formed as 

a conversion product of GR via dehydration and oxidation [65] rather than directly via reaction 

4-74, although formation via both routes would be possible.  

Increasing the Cl- content of the exposure solution would lead to an excess of intercalated Cl- 

ions within the structure of GR(Cl-), and to maintain electroneutrality, a number of Fe2+ ions, 

equal in number to that of the incorporated Cl- anions, would be oxidized to Fe3+. This increase 

in the [Cl-]/[Fe] ratio leads to γ-FeOOH formation at the expense of Fe3O4 as observed previously 

[27, 59, 65-68]. Taylor [69] suggested that the effect of the Cl- was due to preferential 

adsorption of Cl- over OH- on the electrode surface which hindered the elimination of water by 
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condensation of neighbouring OH- anions to form the Fe-O-Fe bonds required for Fe3O4 

formation. As such, the Cl- content of the exposure environment leads to a competition between 

the formation of Fe3O4 at low [Cl-] and γ-FeOOH at higher [Cl-].  

 

 

(4-75) 

This evolution in composition is evident in the corrosion products as the [Cl-] is increased. When 

[Cl-]=1.00 M, the presence of both Fe3O4 and γ-FeOOH shows a turning point in the ability of the 

Cl- to catalyze Fe2+ to Fe3+ possibly via the transformation of GR. However, the simultaneous 

presence of Fe3O4 indicates its formation persists either via direct anaerobic corrosion or via GR 

conversion. Each of the [Cl-]=5.00 M experiments exhibits small differences in the corrosion 

products. For [Cl-]=5.00 M (#2) only Fe3O4 and residual Fe3C were identified. This would suggest 

that the O2 level in this solution was too low for surface oxidation despite the high [Cl-]. The 

identification of Fe3C indicated that while the electrochemistry and SEM suggested the surface 

had passivated, there remains open areas in the corrosion product where the film is only 

partially protective. For [Cl-]=5.00 M (#3), Fe3O4 remained the dominant corrosion product, 

whereas for [Cl-]=5.00 M (#1), γ-FeOOH was the dominant corrosion product. This would 

indicate that the trace levels of O2 present combined with the high [Cl-] were sufficient to drive 

the Cl- induced catalysis of FeII oxidation to FeIII via transformation of GR to γ-FeOOH.  

The presence of β-FeOOH could also be attributed to the increased [Cl-] ([Cl-]=1.00 M and 5.00 

M (#1)), since an increase in the Cl- intercalation in the GR precursor has been shown to cause 

preferential oxidation to β-FeOOH [27]. However, the appearance of the β-FeOOH as a corrosion 

product is always accompanied by the presence of Fe3C indicating that β-FeOOH is formed at 

regions of higher activity. Under the conditions (high [Cl-]; traces of O2) when surface passivation 

does occur and pit initiation is observed, the breakdown sites accumulate deposits which are 

generally FeIII oxyhydroxides although the composition is difficult to determine since the Raman 

peaks are commonly broad indicating poor crystallinity. The extent of propagation at these 

locations will be limited by the availability of dissolved O2. 
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Thus, the difference between the repeated experiments in 5.0 M Cl- (#1 and #2) appears to be a 

difference in available O2. In #1 ECORR rapidly approaches (𝐸𝑒)𝐹𝑒𝐼𝐼 𝑜𝑥 / 𝐹𝑒𝐼𝐼𝐼 𝑜𝑥 leading to the early 

onset of film breakdown events. Once initiated, RP falls to a low value which is then sustained 

indefinitely, indicating the presence of sufficient O2 to maintain propagation. By contrast, in #2, 

ECORR increases more slowly and breakdown events take a substantial period of time to occur 

and are considerably smaller and limited, the RP value decreasing only marginally. This indicates 

a much lower O2 concentration.  

These results indicate a dual role for Cl- when present at high concentration. In the presence of 

dissolved O2 it can catalyze surface oxidation leading to passivity. However, once passivity is 

achieved it can lead to the initiation of breakdown sites, the expected influence of Cl- on passive 

oxide films.  

4.4.2. Effects of Carbonate 

From the cyclic voltammetry data, two important trends can be noted. First, as the [HCO3
-/CO3

2-

]T increases an increase in both the cathodic and anodic dissolution current is observed. The 

acceleration of the cathodic reaction is due to the additional H+ supplied by the dissolution of 

HCO3
-. In addition, it is possible that the HCO3

- may in fact act as a secondary cathodic reaction. 

 2𝐻𝐶𝑂3
− + 2𝑒− → 𝐻2 + 2𝐶𝑂3

2− (4-76) 

 

The acceleration of anodic dissolution in the presence of HCO3
-/CO3

2- has been reported 

previously and is attributed to the stabilization of the dissolved Fe2+ via complexation as 

FeHCO3
+ and Fe(HCO3)2 at the pH in this experiment [3, 4, 8, 70-74]. This acceleration is more 

marked at lower [Cl-] suggesting a competition between the influence of Cl- in accelerating FeII 

oxidation to FeIII and that of HCO3
-/CO3

2- to stabilize and dissolve Fe2+. In the most concentrated 

HCO3
-/CO3

2- solution the difficulties in maintaining the Ar-purge gas flow lead to fluctuations in 

ECORR and RP attributable to changes in the anodic reaction kinetics. These responses indicate 

that the slow oxidation of the Fe3O4 surface is reversible at least in the early stages when the 

extent of oxidation to FeIII is minor and the surface is not passivated. The ability to reverse the 

oxidation process suggests that FeIII in the oxide surface can be reduced to the more soluble Fe2+ 

state, a process which could be driven by reaction with soluble Fe2+ [75] or by galvanic coupling 
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of the reductive dissolution of the FeIII oxide with the corrosion of the substrate steel surface 

[76, 77].  

Secondly, an increase in the [HCO3
-/CO3

2-] increased the anodic breakdown potential to more 

positive values. This competition between the two anions can be attributed to one of two 

possible effects: (i) the anions compete for adsorption sites on the oxide surface with Cl- more 

likely to be adsorbed at lower [HCO3
-/CO3

2-] leading to breakdown and pit initiation [4, 72, 78]; 

(ii) if film breakdown is to lead to pit propagation local acidity, due to hydrolysis of dissolved 

Fe2+, must be achieved and maintained. In carbonate solutions this acidity could be neutralized. 

At the pH (8.9) employed in these experiments, HCO3
- would be the dominant species, the pKa 

for the equilibrium 

 𝐻𝐶𝑂3
− ⇌ 𝐻+ + 𝐶𝑂3

2− (4-77) 

being  ~10.3, and the equilibrium 

 𝐻2𝑂 + 𝐶𝑂2 ⇌ 𝐻+ + 𝐻𝐶𝑂3
− (4-78) 

 being  ~6.35.  

At [HCO3
-/CO3

2-]=0.001 M, the positive ECORR indicates the high Cl- content has the dominant 

influence on surface chemistry, confirmed by the nature of the corrosion products, the mixture 

of Fe3O4 and GR being similar to that observed when only Cl- was present. This indicates that the 

[HCO3
-/CO3

2-] is too small to stabilize Fe2+ species and that the Cl- causes preferential 

stabilization of Fe3+ [3, 4, 72]. This is consistent with the occurrence of localized corrosion 

events. However, the small [HCO3
-/CO3

2-] appears to be sufficient to inhibit the transformation 

from metastable to stable pitting by buffering the pH at these breakdown sites allowing 

repassivation to occur.  

When [HCO3
-/CO3

2-] is increased to 0.01 M the lower ECORR and RP values show Cl- no longer 

dominates the surface chemistry, possibly due to its replacement on the surface by HCO3
-/CO3

2-, 

which would stabilize the formation of soluble Fe2+ and prevent Cl- induced oxidation. Raman 

analyses showed Fe3O4 to be the generally observed corrosion product, consistent with this 

assignment, although the observation of γ-FeOOH and β-FeOOH, confirms that traces of 

dissolved O2 still dominated the nature of the corrosion products. At the highest [HCO3
-/CO3

2-] 

(0.10 M) the low ECORR and RP values and the observation of Fe3O4 and Fe2(OH)2CO3 as the 
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dominant corrosion products confirms that the surface chemistry is HCO3
-/CO3

2- dominated not 

Cl- dominated.   

Fe2(OH)2CO3 has been observed as a corrosion product in O2-poor environments [8, 47, 52, 79-

86] and is found as a large component of the rust layers on archaeological artefacts recovered 

from anoxic, water saturated soils [47, 50, 81, 87, 88]. Fe2(OH)2CO3 is known to form 

competitively and together with siderite (FeCO3) [47, 81, 87, 89]. Azoulay et al. [89] propose that 

Fe2(OH)2CO3  can form via direct precipitation from solution or in the conversion of Fe(OH)2: 

 2𝐹𝑒2+ + 2𝑂𝐻− + 𝐶𝑂3
2− → 𝐹𝑒2(𝑂𝐻)2𝐶𝑂3 (4-79) 

 2𝐹𝑒(𝑂𝐻)2 + 2𝐻+ + 𝐶𝑂3
2− → 𝐹𝑒2(𝑂𝐻)2𝐶𝑂3 + 2𝐻2𝑂 (4-80) 

 

Analysis of the Pourbaix diagram, Figure 4-35, shows that Fe2(OH)2CO3 is expected in neutral to 

slightly alkaline conditions, and its oxidation to α-FeOOH, while possible, would require oxidizing 

conditions not expected in our experiments. Of more interest is the fact that Fe2(OH)2CO3 is 

thermodynamically metastable with respect to FeCO3 and would be expected to transform to 

FeCO3 over an extended exposure period. Our experiments are of relatively short duration and it 

is possible that over a longer exposure period Fe2(OH)2CO3 would transform to FeCO3 [8, 78, 89]. 

This is consistent with the observation of inner Fe2(OH)2CO3 and outer FeCO3 corrosion layers 

observed on archaeological artefacts exposed to anoxic groundwaters containing HCO3
-/CO3

2- [8, 

47, 50, 81, 88, 89].  
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Figure 4-35: Pourbaix diagram of iron in carbonate containing aqueous media at 25°C for 

equilibria involving Fe2(OH)2CO3 (dotted lines) and FeCO3 (solid lines) [89]. 

 

4.4.3. Effects of Sulphate 

The considerably more positive ECORR and larger RP values obtained when SO4
2- as opposed to 

HCO3
-/CO3

2- is present shows SO4
2- does not stabilize Fe2+ and does not, therefore, inhibit the Cl- 

catalyzed oxidation of the surface by traces of dissolved O2. As a consequence, film breakdown 

processes are frequent leading to the expected Raman signature for such locations, peaks in the 

200 to 600 cm-1 range and broad bands in the 1200 to 1700 cm-1 range indicating the presence 

of FeIII oxyhydroxides over a carbonaceous residue left behind by corrosion of pearlite grains. 

Irrespective of the [SO4
2-] such pitted locations do not propagate extensively which reflects both 

the limited amount of available O2 and the inability of SO4
2- to accelerate anodic dissolution of 

the steel. This latter point is demonstrated in the CVs which show no significant effect of this 

anion on the anodic dissolution current.  

The breakdown potentials determined in CVs, Figure 4-34(d), show SO4
2- is much more effective 

than HCO3
-/CO3

2- in retarding film breakdown. Since the pKa for the HSO4
-/SO4

2- dissociation 
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equilibrium is 1.92, this cannot be attributed to the ability of SO4
2- to buffer the acidity which 

accompanies the development of pits. This would suggest that SO4
2- can displace Cl- from the 

FeIII oxide surface at sufficiently positive potentials, thereby stabilizing the oxide against 

breakdown. By contrast, HCO3
-/CO3

2- appears unable to do this except at significantly higher 

concentrations. A possibility is that at low [HCO3
-/CO3

2-] any ability of the ion to suppress 

breakdown is counterbalanced by its ability to stabilize the Fe2+ state once breakdown occurs.    

4.5. SUMMARY AND CONCLUSIONS 

The electrochemical behaviour as well as the corrosion products formed on carbon steel is 

dependent on the anion content of the exposure environment as well as the levels of dissolved 

O2.  

An increase in [Cl-] led to an increase in ECORR and RP which suggested a less reactive surface 

state explained by the ability of Cl- to induce passivation by the stabilization of FeIII oxides in the 

presence of traces of O2. The catalysis of this oxidation appears to be a slow reaction with the 

outer surface of Fe3O4 and is dependent on the availability of dissolved O2. When passivation 

does occur (high [Cl-]; traces of O2) pitting can occur with an accumulation of FeIII oxyhydroxides 

leading to partial passivation of breakdown sites. At high concentrations, Cl- exerts a dual role 

first catalyzing surface oxidation leading to passivity, and then causing the initiation of 

breakdown sites on the passivated surface. The presence of Cl- also influences the final 

corrosion product with low [Cl-] favouring the formation of Fe3O4 while high [Cl-] promotes the 

formation of γ-FeOOH.  

The addition of [HCO3
-/CO2-] accelerates the anodic dissolution of Fe2+ by stabilization of soluble 

complexes such as FeHCO3
+ and Fe(HCO3)2. This leads to a competition between the stabilization 

of Fe2+ by HCO3
-/CO3

2- and the oxidation to FeIII oxides catalyzed by Cl-. An increase in [HCO3
-

/CO3
2-] also shifted the breakdown potential to more positive values due to the ability of the 

HCO3
-/CO3

2- to buffer local acidity and prevent pit propagation. Even at low [HCO3
-/CO3

2-] (0.001 

M), HCO3
-/CO3

2- can buffer the pH at breakdown sites allowing repassivation to occur.  

The increased values of ECORR and RP in the presence of SO4
2- indicate this anion does not prevent 

the Cl- catalyzed oxidation to FeIII oxide in the presence of traces of O2. Passivation of the surface 

in this manner causes more frequent breakdown processes but their propagation appears 

limited due to the inability of SO4
2- to promote Fe2+ dissolution. Additionally, SO4

2- was shown to 
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have a more pronounced effect on the film breakdown potential than HCO3
-/CO3

2-, suggesting it 

may be more strongly adsorbed on the FeIII oxide surface.     
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Chapter 5 

 

The Electrochemical Behaviour of A516 Gr70 Carbon Steel Exposed to Anoxic Simulated 

Groundwater Environments 

5.1. INTRODUCTION 

Sedimentary clay environments have been chosen as a potential site for the use of single-walled 

carbon steel containers for the disposal of high level nuclear waste in Canada. The emplacement 

of the container within sedimentary clays provides an additional barrier to the release of 

radionuclides should container failure occur. However, the composition of groundwaters in 

sedimentary clay environments may differ between individual locations. As such, it is prudent to 

determine the effects of various groundwater compositions on the corrosion of the steel 

container. Specifically, the effects of [Cl-] and [HCO3
-/CO3

2] are of top priority since Cl- and HCO3
-

/CO3
2 have been shown to influence the corrosion behaviour of the steel as well as the identity 

of the corrosion products formed.  

Since the design life of a container in a Deep Geologic Repository (DGR) is very long, it is 

important to determine the corrosion behaviour of steel over extended periods of time under 

conditions which simulate the groundwater environment. Archaeological artefacts have 

commonly been used to determine the behaviour of iron over extended periods of time (up to 

450 years). However, the groundwaters in which these objects were corroded may not closely 

simulate those of the DGR sedimentary clay environment. In this and the subsequent chapter, 

results of a study of the corrosion behaviour of A516 Gr70 carbon steel over extended periods of 

time are presented. The electrochemical results, recorded over a period of 60 days, are 

complimentary to the results of exposure experiments conducted over a 30 month time scale 

presented in Chapter 6.  

The objective of the research described in this chapter is to explore the effects of [Cl-] and HCO3
-

/CO3
2 buffering on the electrochemical behaviour of A516 Gr70 carbon steel as well as the 

composition and morphology of the corrosion deposits formed over a 60 day exposure period. 

In addition, experiments were conducted in a simulated groundwater solution comparable to 

those expected within sedimentary clay repository environments. A combination of 

electrochemical techniques was employed to monitor the corrosion behaviour of the steel while 
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Raman and FTIR spectroscopy and scanning electron microscopy were used to identify the 

corrosion product deposits and determine their morphology.  

5.2. EXPERIMENTAL DETAILS 

5.2.1. Materials and Electrode Preparations 

Electrodes were fabricated using A516 Gr70 carbon steel (0.23 C; 1.11 Mn; 0.07 P; 0.03 S; 0.26 

Si; 0.01 Cu; 0.01 Ni; 0.02 Cr; 0.004 Mo; 0.036 Al; 0.019 V; 0.003 O [wt.%], balance Fe) in the form 

of circular coupons 1.0 cm in diameter and 0.5 cm in height. Each electrode was fixed in a high-

performance epoxy resin (Hysol EE 4190) with a single face (surface area = 0.7854 cm2) exposed. 

Each coupon was wet polished with 180, 600, 800 and 1000 grit SiC papers (Presi). A stainless 

steel rod was connected to the back of the electrode to facilitate connection to external 

measuring circuits. The steel rod and connection were sealed with laboratory film (Parafilm) and 

several layers of Teflon tape to avoid exposure to the electrolyte. The electrodes were then 

transferred into an anaerobic chamber and further polished with 1200 grit SiC paper to remove 

any air-formed oxides and rinsed with deaerated type 1 water prior to emplacement in the 

experimental solution. 

5.2.2. Electrochemical Cell and Equipment 

All experiments were conducted in a standard three-electrode, three-compartment glass cell. 

The main chamber of the cell was separated from the two side compartments by glass frits. The 

reference electrode was a commercial saturated calomel electrode (SCE, Fisher Scientific) placed 

in one side compartment of the cell and connected to the main chamber via a Luggin capillary, 

the tip of which was positioned just below the surface of the working electrode. All potentials 

are reported against the SCE scale (+0.241 V vs. SHE). A Pt sheet welded to a Pt wire housed in 

the second side compartment of the cell acted as the counter electrode. The electrochemical 

cell was placed in an anaerobic chamber to avoid any influx of atmospheric O2. Corrosion 

potential (ECORR), polarization resistance (RP) and electrochemical impedance spectroscopy (EIS) 

measurements were recorded using a Solartron Analytical Modulab running Modulab XM ECS 

software.  
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5.2.3. Experimental Procedure 

ECORR measurements were performed over a period of 47-60 days to monitor the corrosion 

behaviour of the steel coupons in a series of four solutions. RP measurements were taken at 8 

hour intervals using the linear polarization resistance (LPR) technique using a ±10 mV change 

from ECORR. Electrochemical impedance spectroscopy (EIS) measurements were made every 48 

hours using a potential perturbation of ECORR ±10 mV over the frequency range of 105 to 10-3 Hz 

with a data collection rate of 11 points per decade.  

5.2.4. Experimental Solutions  

A series of three exposure solutions were used to investigate the effects of [Cl-] and buffering by 

HCO3
-/CO3

2-, Table 5-1. Additionally, a simulated groundwater solution mimicking the 

composition of Canadian sedimentary clay groundwater (given in Table 5-2) was also used. The 

pH of solutions (i), (ii), and (iv) were set to 6.3 ± 0.5 to mimic the expected pH range of 

sedimentary groundwaters at the repository level. The pH of solution (iii) was allowed to 

maintain its naturally buffered pH value of 8.85. Before preparing each solution, type 1 water 

was deaerated on the benchtop using ultra-high purity Ar at a high flow rate for at least 90 

minutes prior to being sealed and transferred to the anaerobic chamber. The flask was sealed 

such that the entire volume was filled with deaerated Type 1 water to avoid any trapped air. 

Final preparation of the solution was completed within the anaerobic chamber where no 

additional measures were required to ensure anoxic conditions.   

Table 5-1: Chemical composition of solutions (i-iii) containing Cl- and HCO3
-/CO3

2-. 

Exposure Solution [Cl-] (M) [HCO3
-] (M) [CO3

2-] (M) 

(i) 0.10 0.002213 0.00 

(ii) 4.77 0.002213 0.00 

(iii) 4.77 0.05 0.05 
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Table 5-2: Chemical composition of solution (iv) representing the expected composition of 

sedimentary clay groundwater in the Canadian Shield.  

Cation Concentration (M) Anion Concentration (M) 

Ca2+ 0.811 Br- 0.021 

K+ 0.320 Cl- 4.758 

Mg2+ 0.337 HCO3
- 0.002 

Na+ 2.175 SO4
2- 0.019 

Sr2+ 0.014   

 

5.2.5. Surface Analysis 

Iron corrosion products formed on the coupon surfaces were identified using Raman and/or 

infrared spectroscopy. Raman analyses were conducted using a Renishaw 2000 Raman 

spectrometer equipped with a 632.8 nm laser line and an optical microscope with a 50X 

magnification objective lens. GRAMS 386 Raman software was used for the collection and 

manipulation of spectra. FTIR analysis was performed using a Bruker-Hyperion 2000 FTIR 

spectrometer in reflectance mode. Each spectrum was collected via the average of 32 scans on a 

gold background. Visualization of the corrosion product morphology was determined using 

either a Hitachi S-4500 Field Emission SEM or LEO (Zeiss) 1540XB FIB/SEM crossbeam system.  

5.3. RESULTS 

5.3.1. ECORR and RP Measurements 

Figure 5-1 shows the ECORR values recorded on electrodes exposed for 47-60 days under anoxic 

conditions in solutions (i-iv) while Figure 5-2 shows the corresponding RP values. The dashed 

horizontal line in Figure 5-1 represents the equilibrium potential for the oxidation of metallic Fe 

to Fe2+ (-0.859 V) calculated from the Nernst equation for an [Fe2+]=10-6 M. ECORR for solution (i) 

decreases over the first 35 days of exposure from -0.773 V to -0.789 V, while RP increases from 4 

kΩcm2 to 72 kΩcm2. This combination of a decrease in ECORR and an increase in the RP indicates a 

suppression of the cathodic reaction rate. The increase in RP with time indicates the 

development of a corrosion-inhibiting oxide/hydroxide suggesting a blocking of both the anodic 

and cathodic reactions with the dominant influence being on the cathodic reaction. Since anoxic 

conditions are maintained in the anaerobic chamber, a Fe3O4 film would be expected. Beyond 35 
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days, ECORR continues to decrease marginally accompanied by a minor increase in RP to a final 

value of 113 kΩcm2, consistent with a slowly increasing suppression of the cathodic reaction.  

In solution (ii) ECORR is considerably more positive (-0.745 V to -0.739 V) and effectively constant 

over the 47 day exposure. The RP values are lower and do not increase with time in contrast to 

the behaviour at the lower [Cl-]. The lower RP values coupled with a considerably higher ECORR 

suggest a more rapid corrosion rate on a thinner Fe3O4 film, as indicated by the 87 kΩcm2 

difference in the steady-state RP values, Figure 5-2. This indicates the surface remains more 

active in solution (ii) with the higher [Cl-]. This suggests an opposite effect of a high [Cl-] on the 

corrosion rate under anoxic conditions (this Chapter) than when traces of dissolved O2 are 

present (Chapter 4). There is no indication of localized events in either solution.   

 

 

Figure 5-1: Corrosion potential (ECORR) measurements recorded on steel exposed to solutions (i) to 

(iv) (Table 5-1 and Table 5-2). 
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Figure 5-2: Polarization resistance (RP) measurements recorded on steel exposed to solutions (i) 

to (iv) (Table 5-1 and Table 5-2). 

 

When 0.10 M HCO3
-/CO3

2- is added to the high [Cl-] solution a significant decrease in ECORR is 

observed, Figure 5-1, consistent with the findings of Chapter 4, which showed that an increase 

in [HCO3
-/CO3

2-] led to a decrease in ECORR. Over the first 10 days, ECORR decreases to ~-0.825 V 

accompanied by a steep increase in RP from 19 kΩcm2 to 470 kΩcm2. In the high Cl- + HCO3
-

/CO3
2- solution the initial fall in ECORR accompanied by a large increase in RP (decrease in 

corrosion rate) suggests a large decrease in the rate of the cathodic reaction. If active conditions 

prevailed then this would be unexpected. The most likely explanation is that this initial period 

involves the galvanically coupled reduction of surface FeIII oxide to anodic dissolution of the 

substrate steel. That this is observable in this experiment but not in the others may reflect the 

differences in pH, the removal of surface oxide requiring a longer time at this higher pH. Closer 

inspection of the ECORR/RP behaviour in the other experiments show a similar effect is observed 
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but of much shorter duration. For the duration of the experiment, ECORR steadily increases (-

0.795 V) while RP remains effectively constant at a value of 1100 kΩcm2. However, while 

increasing slightly, ECORR experiences fluctuations on the order of 10-20 mV over the exposure 

period of 5 to 35 days. These fluctuations, and the accompanying changes in RP, are shown in 

more detail in Figure 5-3. Both parameters show concurrent increases and decreases indicating 

fluctuations in the rate of the anodic reaction. At such a low ECORR this could indicate the periodic 

and localized interruption of Fe3O4 formation by CO3
2- catalyzed Fe2+ dissolution. A possibility is 

that this reflects the dissolution of Fe3O4 and the deposition of FeCO3 (as discussed below). The 

observation of very high RP values with a very low ECORR is different to the behaviour observed 

when traces of dissolved O2 are present (Chapter 4) when large RP values are generally 

associated with more positive ECORR values, a combination taken to indicate slow passivation of 

the steel surface.  

The value of ECORR in the simulated groundwater solution initially increases slightly over the first 

15-20 days of exposure accompanied by an increase in RP from 4 kΩcm2 to 50 kΩcm2. Given the 

similar [Cl-] and the absence of a significant [HCO3
-/CO3

2-]T, the ECORR values in solutions (ii) and 

(iv) would be expected to be similar. However, from Figure 5-1, ECORR in the simulated 

groundwater experiment (solution (iv)) was much higher. This increase in ECORR, coupled with a 

lower corrosion rate (higher RP value), indicates that the dominant influence on the corrosion 

rate is the suppression of the anodic reaction. The CO3
2- and SO4

2- concentrations are low in the 

groundwater and would not be expected to significantly increase the corrosion rate. Also, in the 

absence of traces of dissolved O2 the formation of passivating FeIII phases would not be 

expected. Beyond 20 days ECORR decreases to a final value of -0.725 V while the RP remains 

unchanged. The constant RP value suggests the steel has achieved steady-state corrosion, which 

is similar to that observed in solution (i). However, this constant corrosion rate is achieved ~10 

days earlier in the simulated groundwater solution (iv), indicating a more rapid suppression of 

the rate by corrosion.      
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Figure 5-3: Corrosion potential (ECORR) (solid line) and polarization resistance (RP) (points) 

measurements for steel exposed to solution (iii) (Table 5-1) over a period of 5-35 days showing 

simultaneous fluctuations in the values of both ECORR and RP. 

5.3.2. Electrochemical Impedance Spectroscopy 

Figure 5-4 shows the impedance data collected on the steel electrode exposed to solution (i). 

The Bode plots, Figure 5-4(a-b), show what appears to be a single time constant response with 

the absolute impedance increasing over time in the low frequency range. A single time constant 

circuit, Figure 5-5, was used to fit the spectra. A constant phase element (CPE) was used to 

account for the non-ideality of the capacitive response of the film, (RP)EIS is the polarization 

resistance, and Rs the solution resistance. Figure 5-4(c) shows the data plotted in the Nyquist 

form. Figure 5-4(d) shows the expanded Nyquist spectra recorded over the first 9 days of 

exposure. An additional feature is visible in the low frequency range, as shown in the inset, 

Figure 5-4(e). This behaviour suggests that multiple surface states, leading to an inductive effect, 

are observed in the early period of exposure, when ECORR is increasing. This is most likely 

attributable to active corrosion of the steel surface during the early stages. Figure 5-4(f) 
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compares the values of (RP)EIS, obtained by fitting the spectra, to the polarization resistance (RP) 

values (from Figure 5-2). The similarity between (RP)EIS and RP shows the two sets of 

measurements are consistent. Also shown in Figure 5-4(f) are the capacitances (C) obtained by 

using the Brug method for converting the CPE, deemed appropriate since the exponent of the 

CPE was between 0.8 and 0.83. The Brug conversion was used since frequency dispersion due to 

a general roughening of the surface was most likely to produce non-ideality in the capacitance. 

The calculated capacitance increased from 65 to 95 µF/cm2 over the 60 day exposure period. 

Such a value suggests the interfacial capacitance can be attributed to the double layer on a 

rough surface. The values are too high to be attributed to a passive film, which is not 

unexpected since the (RP)EIS values are relatively low. The slight increase in the value of the 

capacitance over the exposure period is consistent with an on-going roughening of the surface.  

Figure 5-6(a) and (b) present the Bode plots measured over the 47 day exposure period in 

solution (ii) which show an increase in absolute impedance over the low frequency range. The 

Nyquist plot, Figure 5-6(c), indicates a single time constant response, and the equivalent circuit 

in Figure 5-5 was again used to fit the spectra, yielding (RP)EIS values consistent with the RP values 

(from Figure 5-2), Figure 5-6(d). Also given in Figure 5-6(d) are the capacitance values, extracted 

from the CPE, using a Brug conversion. The values of the CPE exponent ranged between 0.84 

and 0.89, which are significantly larger than those observed for solution (i), suggesting a more 

ideal capacitance. As for solution (i), the capacitance values increased over the exposure period 

from 60 µF/cm2 to 120 µF/cm2, consistent with a double layer capacitance measured on an 

increasingly rough surface. While the absolute values of the double layer capacitance will 

change with the concentrations of the different solutions (i.e., increasing [Cl-]), we wouldn’t 

expect these variations to have a large effect on the capacitance values and their comparisons.  
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Figure 5-4: EIS data for steel exposed to solution (i) (Table 5-1) showing (a) and (b) Bode plots; 

(c) Nyquist plots; (d) the first three Nyquist plots on a larger scale; (e) the low frequency plot for 

the spectra taken after 3 days (black); (f) a comparison of RP (from LPR) and (RP)EIS (from fitted 

EIS plots) and the capacitance (C) (from the fitted EIS plots). Inset legends show the exposure 

time, in days, at the time of the EIS measurement. 
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Figure 5-5: One time-constant equivalent circuit used to fit impedance spectra for solutions (i) to 

(iv) consisting of a constant phase element representative of the film capacitance (CPE), a 

polarization resistance (RP)EIS, and the solution resistance (Rs). 

 

 

Figure 5-6: EIS data for steel exposed to solution (ii) (Table 5-1) showing (a) and (b) Bode plots; 

(c) Nyquist plots; (d) a comparison of RP (from LPR) and (RP)EIS (from fitted EIS plots) and the 

capacitance (C) (from the fitted EIS plots). Inset legends show the exposure time, in days, at the 

time of the EIS measurement. 

CPE

Rp

Rs

Element Freedom Value Error Error %

CPE-T Fixed(X) 0 N/A N/A

CPE-P Fixed(X) 1 N/A N/A

Rp Fixed(X) 0 N/A N/A

Rs Fixed(X) 0 N/A N/A

Data File:

Circuit Model File:

Mode: Run Simulation / Freq. Range (0.001 - 1000000)

Maximum Iterations: 100

Optimization Iterations: 0

Type of Fitting: Complex

Type of Weighting: Calc-Modulus
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Figure 5-7(a-b) shows the Bode plots obtained over a 60 day period of exposure to solution (iii). 

The phase angle plot, Figure 5-7(a), suggests the possibility of two time constants, the phase 

angle remaining constant at high frequency (100 Hz) but increasing at low frequency as 

observed in solutions (i) and (ii). This would suggest it may be possible to separate the charge 

transfer resistance at high frequencies from the film resistance at low frequency. However, 

while fitting to a two time constant circuit yielded a visually better fit, it also led to large errors 

associated with the calculated values. Consequently, the single time constant equivalent circuit, 

Figure 5-5, was again used to fit the spectra, although it should be noted that the low frequency 

data suggests features not accounted for in the equivalent circuit. Figure 5-7(d) shows the (RP)EIS  

 

 

Figure 5-7: EIS data for steel exposed to solution (iii) (Table 5-1) showing (a) and (b) Bode plots; 

(c) Nyquist plots; (d) a comparison of RP (from LPR) and (RP)EIS (from fitted EIS plots) and the 

capacitance (C) (from the fitted EIS plots). Inset legends show the exposure time, in days, at the 

time of the EIS measurement. 
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values are consistent with the RP values. The capacitance values obtained as described above 

are presented in Figure 5-7(d). The CPE exponent was in the range 0.88 to 0.95, which was 

significantly higher than in the other solutions, indicating very little frequency dispersion and a 

much more uniform surface than observed for the more active conditions present in solutions (i) 

and (ii). The capacitance values increase only slightly from 20 to 25 µF/cm2 over the duration of 

the experiment. These low capacitances are consistent with a film-free surface and suggest the 

surface remains un-roughened by significant corrosion, consistent with the considerably 

reduced corrosion rate. This may reflect the influence of the increased pH in this solution.   

 

Figure 5-8: EIS data for steel exposed to solution (iv) (Table 5-2) showing (a) and (b) Bode plots; 

(c) Nyquist plots; (d) a comparison of RP (from LPR) and (RP)EIS (from fitted EIS plots) and the 

capacitance (C) (from the fitted EIS plots). Inset legends show the exposure time, in days, at the 

time of the EIS measurement. 

Figure 5-8(a-b) show the Bode plots obtained over 59 days of exposure to the simulated 

groundwater solution (iv). The spectra were fitted to the single time constant circuit, and the 

(RP)EIS values were identical to the RP values. Capacitance values for the surface film are given in 

Figure 5-8(d). The CPE exponent values remain constant for the duration of the exposure at 
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~0.91 indicating a uniform surface and little frequency dispersion. The calculated capacitance 

values were also constant, suggesting a uniform surface, between 60 and 70 µF/cm2. While 

larger than observed in solutions (i) and (ii), their consistency indicates no increase in surface 

roughness with exposure time. 

5.3.3. Surface Analyses  

Figure 5-9 shows SEM micrographs recorded after 60 days of exposure to solution (i). Figure 

5-9(a) shows a low magnification image, representative of the steel surface, which appears to be 

generally roughened and possibly covered with a very thin but uniform corrosion film. The 

general roughening of the surface is consistent with the slow increase in capacitance which 

suggested an on-going roughening of the sample surface. Figure 5-9(b) and (c) suggest that any 

film present, if at all, is extremely thin. Figure 5-9(d) shows a large area exhibiting a different 

morphology found to form on some regions of the sample surface. Closer examination, Figure 

5-9(e), shows this patch is composed of thin and irregularly spaced plate-like crystals consistent 

with the morphology of Fe2(OH)2CO3, as discussed in Chapter 4, for samples exposed to a 

solution containing HCO3
-/CO3

2-. Figure 5-9(f) shows a second location within this deposit which 

appears to be covered with a thicker and more dense deposit. Figure 5-9(g) is a low 

magnification image which shows four such locally corroded regions (observed as dark circles) 

which are on the order of 12-15 µm in diameter and exhibit a film morphology consistent with 

Fe2(OH)2CO3, Figure 5-9(h) and (i). The demarcation between these patches and the general 

surface suggests, while not pits, these areas experienced enhanced dissolution.  

The Raman spectra recorded on the steel surface exposed to solution (i) are shown in Figure 

5-10. The single band at 1069 cm-1 in each spectrum can be attributed to the ν1 C–O symmetric 

stretching of a coordinated CO3
2- species [1-3]. The lack of any other visible features within the 

spectra suggests that the CO3
2- containing species is not Raman active. The FTIR spectra 

recorded on three different locations on the surface, Figure 5-11, confirm the presence of 

Fe2(OH)2CO3 [4, 5]. The prominent peaks at 1364 and 1527 cm-1 are due to C–O stretching while 

those at 3319 and 3482 cm-1 are due to O–H stretching. The peaks at 770 cm-1 and 835 cm-1 are 

attributed to the ν4 in-plane and ν2 out-of-plane bending of CO2
2- while the peak at 951 cm-1 is 

due to the δ-OH bending mode. The FTIR spectra indicate that the crystalline film observed in 

Figure 5-9(d-f) and in the small circles in Figure 5-9(g-i) is Fe2(OH)2CO3. The absence of a Raman 

band at 667 cm-1, indicating the presence of Fe3O4 [1, 6-15], would suggest either the active 
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metal surface is exposed or any surface film present is too thin to be detected by Raman 

spectroscopy. In addition, the absence of a Raman signature between 1200 and 1700 cm-1, 

indicating the presence of residual Fe3C from corroded pearlite grains, confirms that the extent 

of corrosion is minimal.  

 

 

Figure 5-9: SEM micrographs of the corrosion product formed after 60 days of exposure to 

solution (i) (Table 5-1) for (a-c) the general steel surface; (d-f) patches of crystalline Fe2(OH)2CO3; 

and (g-i) additional locations showing distribution (g) and the morphology ((h) and (i)) of the 

crystalline patches. 
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Figure 5-10: Ex-situ Raman spectra recorded on the steel coupon after 60 days of exposure to 

solution (i) (Table 5-1). 

 

Figure 5-11: Ex-situ FTIR spectra recorded on three locations of the steel after 60 days of 

exposure to solution (i) (Table 5-1). 
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Figure 5-12 shows the Raman spectra recorded on the surface exposed to solution (ii) (Table 

5-1) for 47 days. Each of the three spectra recorded are featureless with no discernable Raman 

bands. Figure 5-13(a,d,g) shows the SEM micrographs, recorded at low magnification across the 

sample surface, confirming the steel has been corroded lightly in a uniform manner across the 

entire surface, consistent with the slow active corrosion process indicated by the positive ECORR 

values and higher corrosion rates, compared to solution (i), indicated by the RP values. 

Furthermore, the general corrosion morphology confirms that the increase in capacitance over 

the duration of the exposure period can be attributed to a general roughening of the sample 

surface caused by active corrosion. The SEM images show a surface which is generally uniformly 

covered with some areas covered with a very thin layer of crystalline corrosion product. The thin 

nature of the corrosion product, if one is present, would explain why no Raman bands were 

seen in Figure 5-12.  

 

Figure 5-12: Ex-situ Raman spectra (1-3) recorded at various locations on the steel coupon after 

47 days of exposure to solution (ii) (Table 5-1). 

 



www.manaraa.com

148 
 

 

Figure 5-14 shows the SEM micrographs recorded on the steel surface exposed to solution (iii) 

(Table 5-1) for 57 days. As observed for carbonate-containing solution (i), several regions of the 

sample surface were covered with dark patches of corrosion product, Figure 5-14(a), with 

magnified images, Figure 5-14(b-c), showing a morphology consistent with the presence of 

Fe2(OH)2CO3. The Raman spectra, Figure 5-15, and FTIR spectra, Figure 5-16, confirm the 

presence of Fe2(OH)2CO3 as observed in solution (i).  

 

 

Figure 5-13: SEM micrographs recorded on three locations on the surface after 47 days of 

exposure to solution (ii) (Table 5-1). 
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Figure 5-14(d-f) shows that limited amounts of corrosion product are present with areas thinly 

covered by crystals consistent with the structure of Fe2(OH)2CO3. Figure 5-14(g-h) shows a 

location with a corrosion product of different morphology consisting of small clumps of multi-

faceted cubic crystals. While there was no evidence for FeCO3 (siderite) in the Raman or FTIR 

spectra, this morphology has been associated with siderite. The presence of siderite would not 

be unexpected at the high [HCO3
-/CO3

2-]=0.10 M in this solution. Whether or not the surface is 

covered with any oxide (presumably Fe3O4) is uncertain since this phase is not detected by 

Raman spectroscopy.  

 

 

Figure 5-14: SEM micrographs recorded on the steel surface after 57 days of exposure to solution 

(iii) (Table 5-1) showing: (a-c) a large patch of Fe2(OH)2CO3; (d-f) the uneven distribution of 

Fe2(OH)2CO3 on the steel surface; (g-h) a location covered by small multi-faceted cubic crystals. 
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Figure 5-15: Ex-situ Raman spectra recorded on the steel coupon after 57 days of exposure to 

solution (iii) (Table 5-1). 

 

Figure 5-16: Ex-situ FTIR spectra recorded on the steel coupon after 57 days exposure to solution 

(iii) (Table 5-1). 
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Figure 5-17 shows the SEM micrographs of the steel surface exposed for 60 days in the 

simulated groundwater solution (iv) (Table 5-2). Some areas of the surface are covered by 

loosely adhered crystalline deposits, Figure 5-17(a), while Figure 5-17(b-c) shows the 

morphology of the underlying surface product. Figure 5-17(d-i) show two additional regions on 

the surface with denser coverages by crystals but with the same underlying corrosion 

morphology. Figure 5-17(g) shows a region of the surface extensively covered by a deposit, 

comprising well-formed disc-shaped or spherical star-shaped crystals, Figure 5-17(h-i).  

 

 

Figure 5-17: SEM micrographs recorded on the steel surface after 60 days of exposure to solution 

(iv) (Table 5-2) showing: (a-f) two regions on the sample surface with different coverages by 

deposits but exhibiting the same underlying morphology; (g) a region covered by a more dense 

crystal layer with the morphology of the disc-shaped and spherical star-shaped crystals shown in 

(h) and (i). 
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Figure 5-18 shows Raman spectra recorded on several locations. Spectrum (5) was recorded at a 

location covered with deposited crystals, identified as vaterite, a rare polymorph of CaCO3. 

Vaterite exhibits either a doublet or triplet for the ν1 symmetric stretching found between 1073 

and 1091 cm-1, with the strongest band at 1091 cm-1 [16], whereas aragonite or calcite (the 

other two polymorphs of CaCO3) exhibit a single sharp peak at 1085 cm-1 [16]. The additional 

Raman bands in the ν1 stretching region (1073-1091 cm-1) as well as the strength of the band at 

1091 cm-1 suggests the formation of vaterite. This assignment is confirmed by the doublet at 714 

and 753 cm-1 which corresponds to the ν4 in-plane bending mode of the molecular CO3
2-, and the 

peaks centered around 205-371 cm-1 which correspond to the translational and rotational lattice 

modes. It is likely that the crystals begin growing with the disc-like morphology but when growth 

is particularly rapid, twinning of adjacent crystals occurs leading to the star-shaped crystal 

structures.  

 

Figure 5-18: Raman spectra (1-5) recorded at various locations on the steel coupon after 60 days 

of exposure to solution (iv) (Table 5-2). Dotted spectrum represents the reference spectrum of 

Fe3O4. 
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The morphology of the surface film underneath the growing vaterite crystals can be seen for 

two locations in Figure 5-17(b-c) and (e-f). While differing in roughness, the general morphology 

at each location is the same. Raman spectra (1-4) recorded on such locations, Figure 5-18, show 

a single band located at 667 cm-1 which can be attributed to Fe3O4. It is noteworthy that a Fe3O4 

film is identifiable after exposure to this solution but not after exposure to solution (ii) (Figure 

5-1) which also had a high [Cl-] and low pH (6.3 ± 0.5). This may reflect the very positive ECORR 

observed in solution (iv) which is close to the equilibrium potential, (𝐸𝑒)𝐹𝑒3𝑂4/𝐹𝑒, at this 

potential (~-0.700 V). It is possible the presence of this surface film accounts for the higher Rp 

values (lower corrosion rate) measured in the simulated groundwater.  

5.4. DISCUSSION 

The influence of [Cl-] on the corrosion rate is to increase it, with an increase in [Cl-] leading to an 

increase in ECORR accompanied by an increase in corrosion rate (decrease in RP). At the low [Cl-] 

the morphology of the corroded surface is clearly visible and illustrates the general nature of the 

corrosion process. The narrow strips outlining the grain features are not likely residual iron 

carbide along grain boundaries. Magnification of an apparently less corroded grain shows the 

residual lamellar structure left behind as the α-Fe is preferentially dissolved from pearlite grains 

leaving a residue of Fe3C. The more heavily attacked grains are α-Fe grains. Clearly if any oxide 

film is present it is extremely thin. At the high [Cl-] the corrosion rate is substantially higher, 

consistent with the larger and increasing capacitance values which indicate the development of 

a rougher surface; this is confirmed by the SEM images. In both cases Raman analyses detect no 

oxide films.  

The combination of an increase in ECORR and the corrosion rate at the higher [Cl-] indicates that 

the increase can be attributed to an acceleration of the cathodic reaction. The RP values show 

that initially the corrosion rates in the two solutions ((i) [Cl-]=0.10 M; (ii) [Cl-]=4.77 M) are 

effectively the same and only deviate for exposure times ≥20 days. It is over this period that 

surface roughness increases markedly at the higher [Cl-], but achieves a steady-state at the 

lower [Cl-]. The slight decrease in ECORR and accompanying increase in RP over the exposure 

period 30 to 60 days suggests a slight suppression of the cathodic kinetics. Presently, the 

explanation of this effect of Cl- is uncertain but possibly explained by surface roughening which 

could lead to a greater exposure of Fe3C, the most likely location of the cathodic reaction. 

However, this is not supported by the Raman analyses which show no significant band in the 
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region 1200 to 1700 cm-1 and the SEM images which show a general surface roughening rather 

than any locations where the residual bands of Fe3C are clearly visible due to the preferential 

anodic dissolution of the α-Fe bands within pearlite grains. This is in contrast to bench top 

experiments (Chapter 4) when traces of O2 are available when such residues were commonly 

observed. This suggests that when H2O is the oxidant the cathodic reaction is more uniformly 

distributed. By contrast, when O2 supports corrosion, the Fe3C strips within the pearlite grains 

act as preferential cathodes leading to the preferential dissolution of the α-Fe within these 

grains.  

At the lower [Cl-] distinct patches of chukanovite (Fe2(OH)2CO3) are present, consistent with 

dissolution as Fe2+ and re-deposition in the carbonate-containing solution. The distinct 

separation between the generally corroded surface and the more heavily corroded patches 

covered with Fe2(OH)2CO3 suggests the exposed surface is at least partially protected despite an 

inability to detect any oxide by Raman spectroscopy. At the higher [Cl-] similar, but less well 

defined, patches of crystalline material are observed but Raman does not detect any 

Fe2(OH)2CO3.The absence of Fe3O4, or its presence as a thin layer only, would be consistent with 

the high solubility of Fe2+ at pH = 6.3 [17]. 

While chukanovite (Fe2(OH)2CO3) is known to form in anoxic environments [5, 18-20], it was 

unexpected due to the low (0.002213 M) [HCO3
-] in comparison to [Cl-] in these solutions. The 

effect of Cl- not HCO3
- would be expected to dominate as observed in experiments conducted in 

the presence of trace O2 (Chapter 4), in which the formation of Fe2(OH)2CO3 in high [Cl-] 

solutions was not observed until the [HCO3
-/CO3

2-] reached 0.10 M. This is consistent with 

reports that at low [CO3
2-] the main corrosion product expected is Fe3O4 with Fe2(OH)2CO3 

becoming the main product in solutions with moderate [CO3
2-] [21]. Refait et al. [21] showed 

that the nature of the corrosion products formed in carbonated media is dependent on the 

interfacial concentration ratios of CO3
2- to Fe2+ and OH- to Fe2+, with the ideal conditions for 

Fe2(OH)2CO3 over Fe3O4 formation being [OH-]/[Fe2+]=1 and [CO3
2-]/[Fe2+]=0.5.  

Since the present experiments were conducted at a pH of 6.3 ± 0.5 two competing phenomena 

could control the formation of corrosion products on the surface. First, the relatively low pH 

would be expected to inhibit the formation of Fe2(OH)2CO3 due to a low [OH-]/[Fe2+] ratio, it 

being well known that Fe2(OH)2CO3 generally forms in neutral to slightly alkaline solutions [19, 

22-25]. However, at the relatively low pH the solubility of the Fe2+ is high and it is possible the 
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increased interfacial [Fe2+] led to the solubility product being exceeded allowing Fe2(OH)2CO3 

formation even at such low [HCO3
-]. This suggests the dominant effect controlling the formation 

of Fe2(OH)2CO3 is the [Fe2+]. Several authors have reported that the formation of Fe2(OH)2CO3 is 

driven by an excess supply of Fe2+ rather than simple precipitation kinetics [5, 12, 19, 22, 23]. In 

addition, it has been reported that the rate of Fe3O4 formation in anoxic solutions is slow, which 

would also favour Fe2(OH)2CO3 formation at low [HCO3
-] [12].  

In the simulated groundwater solution (iv) the increase in both ECORR and RP over the first 15-20 

days suggests the anodic reaction is suppressed, after which the corrosion rate remained 

constant. By comparison to solution (ii), which has the same [Cl-] and [HCO3
-], the value of ECORR 

was more positive and RP higher, indicating that the additional groundwater ions in solution (iv) 

influenced the corrosion rate. This suggests that the vaterite (CaCO3) deposit is at least partially 

protective. The rapid initial increase in RP over the first 20 days may reflect the formation of 

Fe3O4 and accumulation of vaterite. While vaterite may be a rare polymorph of CaCO3, several 

authors have claimed that the growth of calcareous corrosion deposits is protective on steel [26-

30].  

The difference in corrosion behaviour in the pH=8.9 solution (iii) compared to those conducted 

in the other three solutions clearly demonstrates the important influence of pH. The 

observation of a lower ECORR is to be expected based on thermodynamics. However, the 

differences in RP values indicate a significant difference in corrosion kinetics, the rate being 

decreased markedly, consistent with the low and constant capacitance values. It has been 

reported that the corrosion layers formed in carbonated media are passivating in nature which 

could explain the high RP values. However, the expected layer of Fe3O4 is not detected with 

Raman and FTIR analyses which showed Fe2(OH)2CO3 as the only identifiable corrosion product. 

SEM images confirmed the presence of large amounts of Fe2(OH)2CO3 forming in non-uniform 

patches across the surface.  Despite this, studies of iron archaeological artefacts show dense 

layers of Fe3O4 tend to form in contact with the metal surface followed by the formation of iron 

carbonates (FeCO3 and Fe2(OH)2CO3) at the Fe3O4/solution interface [18, 22, 31]. Electrochemical 

studies in simulated soils indicate the presence of a compact and non-porous corrosion product 

layer at the metal interface most likely responsible for the corrosion kinetics [32-34]. 

Synchrotron XRD and XPS studies of passive films formed over short durations in neutral to 

slightly alkaline borate buffer solutions indicate this dense interfacial layer was composed of a 
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spinel-type iron oxide intermediate in composition between Fe3O4 and γ-Fe2O3 [33]. Synchrotron 

STXM studies on an archaeological iron nail exposed to anoxic, carbonated soil for a period of 

>450 years [34] confirmed the presence of a 100 nm interfacial layer at the metal interface, 

which X-ray absorption spectra indicated was predominantly composed of a mixture of Fe3O4 

and γ-Fe2O3 in proportions of roughly 1/3 and 2/3 respectively. A thin Fe3O4/γ-Fe2O3 spinel layer 

in contact with the metal surface has been identified passive [18, 31, 34].  

The presence of a thin FeII/FeIII spinel oxide at the metal interface combined with the outer 

Fe2(OH)2CO3 layer could explain the relatively low resistivities of these corrosion layers observed 

with macroscopic techniques. The low resistivity of both Fe3O4 (ρ=3 x 10-3 Ωm) and γ-Fe2O3 (ρ=5 

x 10-3 Ωm) allows for the formation of a conductive network in what would otherwise be an 

insulating matrix of carbonates [34]. The constant corrosion rate observed after 10 days can 

then be attributed to the growth of an interfacial Fe3O4 barrier layer. The noise associated with 

the ECORR and RP values indicate variations in the kinetics of the anodic reaction suggesting any 

thin Fe3O4 barrier layer present is unstable, and the ensuing Fe2+ dissolution could then account 

for the precipitation or growth of Fe2(OH)2CO3 [34]. While the outer Fe2(OH)2CO3 layer may play 

a role in corrosion protection by slowing the transport of dissolved ions to and from the metal, it 

has also been shown to be highly porous and cracked which allows water to maintain contact 

with the metal through a network of micro- and nano-pores leading to a slow and constant 

corrosion process [18, 34]. This could explain why the sample surface has not yet been 

completely covered by the Fe2(OH)2CO3 film even after a period of 60 days exposure.  

The results obtained in solution (iii) with a pH=8.9 can be compared to those presented in 

Chapter 4 for experiments conducted in solutions with the same [Cl-], with and without added 

HCO3
-/CO3

2-, and in the presence of traces of dissolved O2. In a solution containing only Cl-, high 

RP values (75 to 160 kΩ cm2) were accompanied by ECORR values in the range of -0.75 V to -0.77 V 

indicating passivation of the steel surface. As a consequence, local film breakdown leading to 

shallow pitting occurred and the localization of corrosion within these pits lead to low RP values  

(~20 kΩ cm2) providing a sufficient supply of dissolved O2 was maintained. When HCO3
-/CO3

2- 

was added, ECORR was significantly reduced and the RP values remained low (20 to 80 kΩ cm2).  
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5.5. SUMMARY AND CONCLUSIONS 

The effects of [Cl-], and HCO3
-/CO3

2- on the corrosion behaviour and corrosion product identity 

and morphology were investigated. The results were compared to those obtained in a simulated 

sedimentary groundwater.  

The increase in [Cl-] caused an increase in the corrosion rate of the steel and a shift from a 

general and uniform corrosion of the surface at low [Cl-] to more aggressive and non-uniform 

corrosion at high [Cl-] leading to an increased roughness of the sample surface. At the higher [Cl-

] an acceleration of the cathodic kinetics was observed possibly due to the exposure of Fe3C in 

the pearlite grains during the roughening of the sample surface, leading to an increased surface 

area on which the cathodic reaction could occur.  

Even in a solution with low [HCO3
-] (solution (i)), chukanovite (Fe2(OH)2CO3) was formed in non-

uniform patches on the steel surface. While generally expected to form in slightly alkaline 

conditions, it was shown that the interfacial [Fe2+] was most likely the main factor leading to 

Fe2(OH)2CO3 deposition. Increased dissolution of the steel led to an increased interfacial [Fe2+] 

which was then able to combine with available HCO3
- in the bulk solution leading to the 

precipitation of Fe2(OH)2CO3.  

Addition of anticipated groundwater ions for a sedimentary clay environment (solution (iv)) 

caused an initial suppression of the anodic kinetics followed by a constant corrosion rate. The 

difference in behaviour between solution (iv) and solution (ii) with comparable [Cl-] and [HCO3
-] 

showed that the groundwater ions influence the steel corrosion rate. The initial increase in RP 

likely reflects the formation of the Fe3O4 film and a deposited layer of vaterite (CaCO3), the latter 

offering partial protection to the steel surface. 

The addition of 0.10 M HCO3
-/CO3

2- to buffer the pH to 8.85 leads to a significant decrease in 

corrosion rate. While not observed by Raman spectroscopy, Fe3O4 formation would be expected 

to reduce the corrosion rate while the outer layer of Fe2(OH)2CO3 observed would provide 

additional protection of the surface. Growth of such a barrier layer would explain the constant 

corrosion rate observed after 10 days of exposure. The subsequent noise observed in the ECORR 

and RP values is then attributed to the unstable nature of this Fe3O4 layer with its dissolution 

leading to the precipitation of Fe2(OH)2CO3. 
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Chapter 6 

 

Long Term Analysis of the Corrosion Product Identities and Morphologies Formed on A516 Gr70 

Carbon Steel Exposed to Anoxic Simulated Groundwater Environments 

6.1. INTRODUCTION 

While electrochemical monitoring of steel coupons exposed to simulated groundwater solutions 

may provide some insight into the corrosion behaviour of steel waste containers (Chapters 4 

and 5), there are limitations to the length of such experiments. As such, the experiments 

described in this chapter were designed to follow the corrosion process over an extended period 

of time, up to 30 months. The experiments were designed to mimic the conditions expected in a 

DGR environment, although the bentonite backfill material was not included. Experiments were 

conducted under anaerobic conditions in solutions which varied in [Cl-] and pH and in a 

simulated groundwater solution for exposure periods up to 30 months. Specimens were 

exposed to an initial period of air exposure prior to emplacement in the solutions to simulate 

the initial state of the container when first emplaced. Samples removed from experiments were 

analyzed using techniques such as Raman spectroscopy, FTIR spectroscopy, scanning electron 

microscopy and focused ion beam milling.  

6.2. EXPERIMENTAL DETAILS 

6.2.1. Materials and Electrode Preparations 

A total of 64 steel coupons were fabricated using A516 Gr70 carbon steel (0.23 C; 1.11 Mn; 0.07 

P; 0.03 S; 0.26 Si; 0.01 Cu; 0.01 Ni; 0.02 Cr; 0.004 Mo; 0.036 Al; 0.019 V; 0.003 O [wt.%], balance 

Fe). Each coupon was cut from a 0.5 cm thick plate with the dimensions 1 cm x 1 cm. Each 

coupon was polished on all six sides with 180, 600, 800, 1000, and 1200 grit SiC papers (Presi), 

and then rinsed with methanol and Type 1 water to remove any organic contaminants. Prior to 

exposure, each coupon was placed on a Teflon sample holder and left exposed to air for a 

period of one week. This was done to simulate the air formed oxide that would be present when 

a disposal container is first emplaced in a DGR.  

6.2.2. Experimental Setup 

Four exposure environments were tested to determine the effects of groundwater composition 

on the corrosion process, with 16 specimens being exposed to each environment. Steel coupons 
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were placed in 2 L beakers fitted with an air tight lid. The lids were fabricated from Teflon and 

fitted with an O-ring seal. A small (1 mm) hole was drilled in the top of the lid to allow any H2 gas 

formed during the corrosion process to be vented. Figure 6-1 shows schematics of the sample 

holder. Sixteen separate sample compartments were machined so that all sides of each coupon 

would be exposed to the solution. Two small ledges were left to prevent coupons from falling to 

the bottom of the beaker. The four small, circular, holes drilled into the Teflon plate allowed 

legs to be added so that the holder was held ~0.5 cm from the bottom of the beaker. Figure 6-2 

shows the 16 coupons on the Teflon holder which was placed in a 2 L beaker. This holder was 

then transferred into an anaerobic chamber, and the solution poured into the beakers which 

were then sealed with the Teflon lids. The solutions were allowed to adopt the ambient 

temperature of the anaerobic chamber which fell between 24 and 26°C. Samples were removed 

periodically over a period of 30 months and analyzed using a series of surface analysis 

techniques to track the progress of the corrosion process. Table 6-1 lists the removal schedule 

for the steel coupons from each of the four exposure environments.  

 

 

Figure 6-1: Schematic showing the top and bottom views of the Teflon sample holder used to 

support 16 steel coupons in each of 4 exposure solutions. 
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Figure 6-2: Steel coupons emplaced on a Teflon holder which was subsequently placed in a 

modified 2 L beaker. The coupons shown had not been polished and are shown to demonstrate 

the experimental set-up. 

Table 6-1: Removal times for steel coupons exposed to a series of four exposure environments.  

Removal Times 

2 days 4 months 

4 days 6 months 

1 week 9 months 

2 weeks 12 months 

4 weeks 18 months 

6 weeks 24 months 

2 months 30 months 

 

6.2.3. Experimental Solutions 

Table 6-2 and Table 6-3 list the chemical compositions of the four solutions. Solutions (i) and (ii) 

were used to investigate the effects of [Cl-] while solution (iii) included HCO3
-/CO3

2- which was 

shown to have a significant effect on steel corrosion, Chapter 4. Solution (iv) simulated the high 

ionic concentration of the groundwater anticipated in sedimentary clays. The pH of solutions (i), 

(ii), and (iv) were set to 6.3 ± 0.5 to mimic that expected in groundwaters at the repository level. 

The pH of solution (iii) was maintained at its natural level (initially 8.85) set by HCO3
-/CO3

2- 

buffering. Type 1 water was deaerated using ultra-high purity Ar gas at a high flow rate for at 
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least 90 minutes prior to being sealed and transferred to the anaerobic chamber. The flask used 

for transfer was filled to capacity and sealed with a glass stopper and Parafilm to ensure no 

trapped air was present in the solution flask during the transfer process. Final preparation of 

each solution was carried out within the anaerobic chamber. No additional measures were 

required to maintain the anoxic conditions of each solution.  

Table 6-2: Chemical compositions of exposure solutions (i) to (iii). 

Exposure Solution [Cl-] (M) [HCO3
-] (M) [CO3

2-] (M) 

(i) 0.10 0.002213 0.00 

(ii) 4.77 0.002213 0.00 

(iii) 4.77 0.05 0.05 

 

Table 6-3: Chemical composition of solution (iv) made up to simulate sedimentary clay 

groundwater in the Canadian Shield. 

Cation Concentration (M) Anion Concentration (M) 

Ca2+ 0.811 Br- 0.021 

K+ 0.320 Cl- 4.758 

Mg2+ 0.337 HCO3
- 0.002 

Na+ 2.175 SO4
2- 0.019 

Sr2+ 0.014   

 

6.2.4. Surface Analysis 

The corrosion products formed on coupon surfaces were identified using either Raman or 

infrared spectroscopy. Raman analyses were conducted using a Renishaw 2000 Raman 

spectrometer equipped with a 632.8 nm laser line and an optical microscope with a 50X 

magnification objective lens. Collection and manipulation of the spectra, including their 

deconvolution, was performed using GRAMS 386 Raman software. Prior to deconvolution, each 

spectrum was baseline corrected using multiple points with the level and zero function of the 

Raman software. The overlapping peak of interest (representing Fe3O4 and γ-Fe2O3) was 

deconvoluted between 550 and 900 cm-1 by fitting the sample spectra to a reference spectrum 

for γ-Fe2O3.  

A Bruker-Hyperion 2000 FTIR spectrometer was used under reflectance mode for FTIR analyses. 

Each spectrum was collected as an average of 32 scans. Gold was used to collect the background 
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spectrum. The general morphology of the corrosion product was determined using either a 

Hitachi S-4500 Field Emission SEM or LEO (Zeiss) 1540XB FIB/SEM cross beam system. Cross-

sectional analyses were performed using the LEO (Zeiss) 1540XB FIB system equipped with a Ga 

ion gun to profile and to observe the corroded steel interface.  

6.3. RESULTS 

The results presented in this chapter are a selection of the data collected for each of the four 

exposure solutions. All of the Raman and SEM data collected, but not presented in this chapter, 

can be found in Appendix A. 

6.3.1. Solution (i): Low Chloride Concentration 

6.3.1.1. Raman Spectroscopy 

From the observations in the previous chapters, the Raman spectra can be generally divided into 

three regions, Figure 6-3, which can aid in the classification of the corrosion products. The 

characteristic peak for Fe3O4 (667 cm-1) is found in region (1) (600 to 800 cm-1), but commonly 

overlaps with the main peak for the structurally similar γ-Fe2O3 (700 cm-1, broad). In this study 

the combined peak in this region is deconvoluted to determine the individual fractions of these 

phases present on the corroded surface. Region (2) (200 to 570 cm-1) is generally characteristic 

of FeIII containing oxides and oxyhydroxides (γ-Fe2O3, α-FeOOH, γ-FeOOH). When poorly 

crystalline and/or present simultaneously it is often difficult to distinguish the nature of the 

phase present by analysis of peaks in this region. Also, bands for GR as well as the t2g and e1g 

modes of Fe3O4 can also be present in this region. Finally, region (3) (1200 to 1700 cm-1) 

generally contains broad peaks which indicate a more extensively corroded surface, the peaks 

indicating the presence of carbonaceous residue at corroded pearlite locations. However, γ-

Fe2O3 can also exhibit broad peaks in this region. In support of this classification, reference 

spectra for commonly observed oxides and oxyhydroxides are presented in Appendix A.  

Figure 6-4(a) through Figure 6-9(a) show the Raman spectra recorded on various surface 

locations on specimens exposed to solution (i) for increasing periods of time. After exposure for 

4 days, the Raman spectra all appear similar with a broad peak centered at 672 cm-1 as well as a 

significant shoulder in the region of 720 cm-1, indicating the presence of both Fe3O4 [1-10] and γ-

Fe2O3 [3, 7, 11, 12]. The presence of γ-Fe2O3 could also be responsible for the shallow broad 
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peaks observed in region (2) (γ-Fe2O3, Appendix A) and the broad peak (spectra (4), (6), and (7)) 

in the region 1300-1660 cm-1 (region (3)) indicating the presence of carbonaceous residue (Fe3C) 

on lightly corroded pearlite grains [1, 8].  

 

Figure 6-3: Sample Raman spectrum highlighting the three regions in which characteristic 

features aiding in the identification of corrosion products can be found. 

Figure 6-4(b) through Figure 6-9(b) show deconvolutions of the spectra within region (1) (Figure 

6-3) into the main contributing peaks for Fe3O4 (672 cm-1) and γ-Fe2O3 (705 cm-1). However, it 

should be noted that both Fe3O4 and γ-Fe2O3 contain bands at these locations. The gray band 

observed in the deconvolution is an artefact required by the Raman software to obtain an 

appropriate fit and is not assigned to any Fe oxide or oxyhydroxide species. While several 

spectra were collected across the specimen surface, only the spectrum closest to the specimen 

average is shown. The deconvolution was accomplished by fitting the experimental spectra to a 

reference spectrum for γ-Fe2O3 which, like Fe3O4, exhibits peaks at both of these locations. The 

Fe3O4 reference peak ratio (Fe3O4: γ-Fe2O3; 8.2) was obtained by fitting a reference Fe3O4 

spectrum to the γ-Fe2O3 spectrum. From the deconvolution in Figure 6-4(b) it can be seen that 

the peak area for both Fe3O4 and γ-Fe2O3 are similar after 4 days of exposure. Such a peak ratio, 

nearing unity, is indicative of a γ-Fe2O3 dominated film.  
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Over the first 12 months of exposure the spectra appear very similar, Figure 6-4(a) to Figure 

6-8(a). While the peak positions remain similar, the deconvoluted spectra, Figure 6-4(b) to 

Figure 6-8(b), show a subtle progression in which the peak for Fe3O4 becomes dominant over 

time. Some locations ((6), (7) after 14 days; (7), (8) after 252 days) appear more corroded than 

others with significant peak intensities in region (3) indicating Fe3C residues on corroded pearlite 

grains. Following 604 days of exposure substantial changes in the Raman spectra were observed, 

Figure 6-9. The broad band in region (3) (1200 to 1700 cm-1) is more intense and better defined 

peaks are observed in region (2), suggesting a more corroded surface which may have FeIII oxide 

or oxyhydroxides phases present, although Fe3O4 can exhibit peaks in region (2). That a slightly 

more oxidized surface is present is suggested by the prominence of the shoulder on the Fe3O4 

peak in region (1) when the bands in region (2) and (3) are more developed. While, to our 

knowledge, no ingress of O2 occurred over the exposure period from 365 to 604 days, such a 

change in composition would be explained by the introduction of traces of O2 causing the 

oxidation of the outer surface of Fe3O4 to the isostructural γ-Fe2O3. 

To determine the ratio of Fe3O4 to γ-Fe2O3 the areas under the two peaks separated by 

deconvolution (as exhibited in Figure 6-4(b) to Figure 6-9(b)) were plotted as a ratio in Figure 

6-10. The horizontal dashed lines indicate the ratios expected if only either γ-Fe2O3 or Fe3O4 

were present. The ratio after 4 days of exposure indicates a dominantly γ-Fe2O3 film, consistent 

with the presence of an air-formed oxide. Over the subsequent 14 days of exposure the ratio 

increases to a value of 3.2 indicating a decrease in γ-Fe2O3 and/or an increase in the amount of 

Fe3O4 present on the surface. As shown by a comparison of Figure 6-4 and Figure 6-5, an 

increase in the area of the Fe3O4 peak as well as a decrease in the peak area for the γ-Fe2O3 is 

clear. This change in composition is most likely due to the reductive dissolution of γ-Fe2O3 

caused by galvanic coupling to the anodically corroding steel leading to Fe3O4. Such a process is 

consistent with the presence of peaks in region (3) indicative of the presence of some more 

extensively corroded regions. The area ratio remains constant up to an exposure time of 56 

days, Figure 6-10. The error bars associated with the calculated ratio beyond 56 days of 

exposure become unacceptably large. This could be due either to the difficulty in accurately 

deconvoluting the spectra or the non-homogeneity of the surface composition. For longer 

exposure periods (up to 365 days), the area ratio increases to an average value of 5.74 

suggesting a clear dominance of Fe3O4. After 365 days the spectra, Figure 6-8(a), no longer show 

any evidence for carbonaceous residues (assumed to be Fe3C of pearlite grains) suggesting that 
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the surface has become completely covered by the Fe3O4 corrosion product. Over the 

subsequent exposure period (365 to 604 days) the ratio appears to increase to the reference 

value for Fe3O4 but the deconvolution process becomes unreliable as indicated by extremely 

large error bars. This ratio is not considered meaningful and is not shown in Figure 6-10.  

 

 

Figure 6-4: (a) Raman spectra (1-6) recorded at various locations on a steel specimen after 4 

days of exposure to solution (i); (b) deconvolution of the spectrum closest to the sample average. 

 

 

Figure 6-5: (a) Raman spectra (1-7) recorded at various locations on a steel specimen after 14 

days of exposure to solution (i); (b) deconvolution of the spectrum closest to the sample average. 
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Figure 6-6: (a) Raman spectra (1-5) recorded at various locations on a steel specimen after 110 

days exposure to solution (i); (b) deconvolution of the spectrum closest to the sample average. 

 

 

 

Figure 6-7: (a) Raman spectra (1-8) recorded at various locations on a steel specimen after 252 

days exposure to solution (i); (b) deconvolution of the spectrum closest to the sample average. 
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Figure 6-8: (a) Raman spectra (1-8) recorded at various locations on a steel specimen after 365 

days exposure to solution (i); (b) deconvolution of the spectrum closest to the sample average. 

 

 

 

Figure 6-9: (a) Raman spectra (1-7) recorded at various locations on a steel specimen after 604 

days exposure to solution (i); (b) deconvolution of the spectrum closest to the sample average. 
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Figure 6-10: Evolution of the area ratio for the Fe3O4 (672 cm-1) and γ-Fe2O3 (705 cm-1) Raman 

peaks after exposure to solution (i), calculated from the deconvoluted spectra. 

 

6.3.1.2. Scanning Electron Microscopy 

Figure 6-11 shows, that after 4 days of exposure to solution (i), the surface was covered by 

patches of corrosion products with the distribution possibly reflecting more heavily corroded 

pearlite grains. Examination of the surface in between these deposits suggests a general 

roughening as well as the initial stages of Fe3O4 formation, Figure 6-11(c), consistent with the 

onset of an anodic corrosion process. The crystalline platelets comprising the film morphology 

are consistent with the presence of a FeIII oxide, Figure 6-11(d-i), present due to corrosion in 

humid air prior to immersion in the solution. This would be consistent with the Raman spectra 

which showed that the surface film is dominated by γ-Fe2O3 with little Fe3O4 formed over this 

short exposure period.  

After 14 days of exposure these patches of γ-Fe2O3 are less prominent, Figure 6-12. The general 

morphology of the surface film, Figure 6-12(c) and (f), suggests the crystals have dissolved into 
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the bulk solution. This is again consistent with the Raman spectra which showed a change in the 

Fe3O4/γ-Fe2O3 phase ratio in favour of Fe3O4. The area of the surface shown in Figure 6-12(g-i) 

looks more corroded than the general surface. The general surface morphology is similar to that 

observed in the short experiments discussed in Chapter 4. The Raman analyses recorded on the 

specimen exposed for 110 days suggest Fe3O4 is the dominant corrosion product, Figure 6-6, 

while Figure 6-13 shows that the platelets initially present have disappeared. The sample 

surface appears to be uniformly corroded, Figure 6-13(c) and (f). Higher magnifications, Figure 

6-13(h-i), show regions with the layered morphology indicating residual Fe3C at corroded 

pearlite locations after preferential dissolution of the α-Fe in the pearlite grain.  

Continued exposure up to 252 days (Figure 6-14) shows little change in the morphology of the 

damaged surface with a slight increase in the extent of corrosion product build-up, Figure 

6-14(c) and (f). Figure 6-14(f) shows preferential corrosion of the pearlite grain structures. Figure 

6-14(g) to (i) show some regions of localized damage are present. After 365 days of exposure the 

morphology of the damaged surface remains the same confirming that, in general, only slow 

anoxic corrosion is occurring, consistent with the Raman analyses indicating Fe3O4 is the 

dominant corrosion product. After 604 days of exposure the surface is considerably rougher, 

Figure 6-16(c, f), consistent with the stronger Raman bands (region 3) for carbonaceous residue. 

Also, the presence of a more ubiquitous deposit suggests some deposition of corrosion product 

from solution. This is likely to be FeIII oxide or oxyhydroxides since Fe2+ would be considerably 

more soluble than Fe3+ at the pH of this solution. It is possible even traces of O2 in the chamber 

could account for this and the Raman observations that FeIII oxides are present.  
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Figure 6-11: SEM micrographs recorded on three locations of a specimen surface (a-c), (d-f), and 

(g-h) after 4 days of exposure to solution (i) showing the distributions of crystalline γ-Fe2O3 and 

the general surface morphology. 
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Figure 6-12: SEM micrographs recorded on a specimen surface after 14 days of exposure to 

solution (i) showing: (a-f) the general surface morphology; (g-i) a region exhibiting a higher 

degree of corrosion damage. 
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Figure 6-13: SEM micrographs recorded on a specimen surface after 110 days of exposure to 

solution (i) showing: (a-f) the general surface  morphology; (g-i) a layered morphology consistent 

with the remnants of Fe3C from ferrite dissolution of pearlite grains. 

 

 

 

 

 



www.manaraa.com

176 
 

 

 

 

 

 

 

Figure 6-14: SEM micrographs recorded on a specimen surface after 252 days of exposure to 

solution (i) showing: (a-e) the general surface morphology; (f) the preferential corrosion of ferrite 

in pearlite grains; (g-i) a region of localized damage. 
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Figure 6-15: SEM micrographs recorded on a specimen surface after 365 days of exposure to 

solution (i) showing: (a-f) the general surface morphology; (g-i) a region exhibiting a more 

significant corrosion deposit.  
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Figure 6-16: SEM micrographs recorded on a specimen surface after 604 days of exposure to 

solution (i) showing: (a-c) the increased roughening of the specimen surface; (d-f) the increase in 

corrosion product coverage. 
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6.3.1.3. Focused Ion Beam Milling 

Figure 6-17 shows FIB cross-sections for three locations ((a-c), (d-e), and (g-f)) on the specimen 

exposed to solution (i) for 252 days. The corrosion product is very thin and in some locations 

porous. Figure 6-17(c) and (f) clearly show the residual Fe3C bands after corrosion of α-Fe 

lamellae bands from pearlite grains. This is particularly obvious in Figure 6-14(f). Even at 

apparently more heavily corroded locations, penetration of corrosion into the steel is generally 

uniform. In some locations, Figure 6-17(g-i), corrosion appears to create void space underneath 

surface oxide layers.  

FIB cross-sections taken on the specimen exposed for 540 days show locations, Figure 6-18(a), 

which appear to have undergone shallow localized corrosion. The backscatter image in Figure 

6-18(b) shows the film on the general surface is very thin. Figure 6-18(c) confirms that shallow 

pitting had occurred at this location. Figure 6-18(d-f) shows the cross-section of a location which 

appears to have undergone significant localized damage. The backscattered image, Figure 

6-18(f), highlights the corrosion product (dark)/base metal (light) interface. In some regions, the 

damage appears to penetrate more than 10 µm into the base metal. Although confirming 

evidence is lacking, it is possible these are boundaries between pearlite and α-Fe grains within 

which the Fe3C acts as a local cathode for the anodic dissolution of the adjacent α-Fe. 

Figure 6-19 shows the FIB cross-sections for the final sample exposed for 604 days. Even after 

this extended period, the film on the generally corroded surface remains extremely thin. The 

deposits are clearly porous and often undermined by corrosion. Figure 6-19(c) shows the 

preferential dissolution of the α-Fe from pearlite grains leaving behind the lamellae of Fe3C. 

Additionally, the angled crevasse on the left side of this image may be the preferentially 

corroded boundary between a pearlite and α-Fe grain. It is possible that Figure 6-19(g-i) shows a 

cross-section taken at one of the locations similar to that seen in Figure 6-16(g-h). It is likely that 

the undermining corrosion occurs at α-Fe/pearlite boundaries and could suggest the cathodic 

reaction is supported on pearlite grains. The porous nature of the corrosion product is most 

likely maintained by the formation of H2 by H2O reduction at the metal surface.   
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Figure 6-17: FIB cross-section micrographs recorded on a specimen surface after 252 days of 

exposure to solution (i) showing: (a-b) and (d-e) the thin nature of the corrosion film; (c) and (f) 

the residual bands of Fe3C left behind after preferential dissolution of the α-Fe in the pearlite 

grains; (g-i) a region exhibiting void spaces created by corrosion under the surface oxide layer. 
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Figure 6-18: FIB cross-section micrographs recorded on a specimen surface after 540 days of 

exposure to solution (i) showing: (a-b) a region of shallow localized corrosion; (c) the formation 

of a localized pit; (d-f) a region which has undergone significant localized damage. Backscatter 

images in (b), (c), and (f) highlight the interface between the base metal (bright) and the oxide 

film (dark).  
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Figure 6-19: FIB cross-section micrographs recorded on a specimen surface after 604 days of 

exposure to solution (i) showing: (a-f) the thin nature of the corrosion film; (c) lamellae of Fe3C 

left after the preferential dissolution of α-Fe from the pearlite grains; (g-i) a region exhibiting 

void spaces created by corrosion under the surface oxide layer. 
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6.3.2. Solution (ii): High Chloride Concentration 

6.3.2.1. Raman Spectroscopy 

Figure 6-20(a) through Figure 6-25 show the Raman spectra recorded on various locations of the 

specimens exposed to solution (ii) for increasing periods of time. After 4 days the spectra are 

similar to those recorded in solution (i) after the same exposure period, Figure 6-20(a). The peak 

in region (1) (600 to 800 cm-1) indicates the presence of both Fe3O4 and γ-Fe2O3. When the 

shoulder at 720 cm-1 (indicative of the presence of γ-Fe2O3) is prominent in region (1), broad 

peaks in region (2) confirm the presence of FeIII oxides, in particular γ-Fe2O3. In addition, these 

two features are accompanied by the broad bands in region (3) which indicates sites dominated 

by γ-Fe2O3 are more heavily corroded than those covered by Fe3O4. The deconvolutions of the 

spectra closest to the sample average are shown in Figure 6-20(b) through Figure 6-24(b), and 

Figure 6-26 shows the evolution of the peak area ratios over the exposure period. The ratios 

show that over the first 110 days of exposure, γ-Fe2O3 is replaced by Fe3O4, as was seen in 

solution (i). This is confirmed by the Raman spectra (Figure 6-21) which show a single peak at 

672 cm-1 combined with the disappearance of the broad peaks in regions (2) and (3), consistent 

with the reductive dissolution of the γ-Fe2O3 coupled to the anodic oxidation of the steel (to Fe2+ 

and Fe3O4) as proposed for the early exposure period in solution (i).  

After a period of 182 days, an unscheduled power outage caused a failure of the anaerobic 

chamber and a subsequent influx of O2 into the sample environment. Comparison of the Raman 

spectra in Figure 6-21(a) and Figure 6-22(a) (i.e., for exposure periods not including and 

including the O2 influx) shows the reformation of γ-Fe2O3 indicated by the shoulder in region (1) 

and the reintroduction of broad peaks in regions (2) and (3). This is confirmed by the observed 

decrease in the Raman peak area ratio recorded on specimens extracted immediately after the 

O2 incursion. After 548 days however, the dominant phase is again Fe3O4 with the bands in 

regions (2) and (3), indicating a more heavily corroded surface, absent, Figure 6-23. This 

indicates that the O2 incursion produced FeIII oxides which were subsequently cathodically 

reduced by coupling to Fe dissolution and Fe3O4 formation. After 716 days the Raman features 

in regions (2) and (3) indicating the presence of FeIII species are again present, suggesting a 

possible second O2 incursion, Figure 6-24. Figure 6-25 shows the Raman spectra recorded after 

the full exposure period of 910 days. The peak in region (1) is at 672 cm-1 and there is no 

indication of a shoulder suggesting the presence of γ-Fe2O3. In addition, two of the three shallow 
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peaks in region 200 to 600 cm-1 can be attributed to Fe3O4 since the bands for Fe3C in region (3) 

are no longer visible. The third minor peak is not attributable to any iron oxide or oxyhydroxide. 

These spectra indicate the surface is comprehensively covered by Fe3O4.  

 

 

Figure 6-20: (a) Raman spectra (1-7) recorded at various locations on a steel specimen after 4 

days exposure to solution (ii); (b) deconvolution of the spectrum closest to the sample average. 

 

 

Figure 6-21: (a) Raman spectra (1-6) recorded at various locations on a steel specimen after 110 

days exposure to solution (ii); (b) deconvolution of the spectrum closest to the sample average. 
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Figure 6-22: (a) Raman spectra (1-8) recorded at various locations on a steel specimen after 252 

days exposure to solution (ii); (b) deconvolution of the spectrum closest to the sample average. 

 

 

 

Figure 6-23: (a) Raman spectra (1-9) recorded at various locations on a steel specimen after 548 

days exposure to solution (ii); (b) deconvolution of the spectrum closest to the sample average. 
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Figure 6-24: (a) Raman spectra (1-7) recorded at various locations on a steel specimen after 716 

days exposure to solution (ii); (b) deconvolution of the spectrum closest to the sample average. 

 

Figure 6-25: Raman spectra (1-7) recorded at various locations on a steel specimen after 910 

days exposure to solution (ii). 
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Figure 6-26: Evolution of the area ratio for the Fe3O4 (672 cm-1) and γ-Fe2O3 (705 cm-1) Raman 

peaks after exposure to solution (ii), calculated from the deconvoluted spectra. 
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6.3.2.2. Scanning Electron Microscopy 

Figure 6-27 shows the SEM micrographs recorded after 4 days of exposure to solution (ii). The 

low magnification images show a slightly corroded surface. While there are fewer patches of 

corrosion product deposit compared to the number on the specimen extracted after a similar 

exposure period in solution (i) this surface probably reflects the surface prior to immersion. The 

early stages of corrosion of pearlite features can be seen in Figure 6-27(c). The area ratio 

calculated from deconvoluted Raman spectra confirms the presence of both Fe3O4 and γ-Fe2O3. 

Figure 6-27(g-h) show some areas of the surface are more heavily corroded.  

After a period of 110 days exposure a visible compact film covered with a scattered deposit is 

observed. The underlying corrosion film, Figure 6-28(b-c) and (e-f), appears compact with some 

regions exhibiting platelet structures. The cracked pattern can be attributed to dehydration on 

removing the specimen from the anaerobic chamber as well as in the chamber of the SEM. 

Figure 6-28(h) shows the morphology of the overlying corrosion deposits. The corrosion product 

deposits on the order of 15-30 µm in diameter, Figure 6-28(i), indicate some localized corrosion 

has occurred, a process that would require the presence of traces of O2.  

Following the O2 incursion after roughly six months of exposure a change in the morphology of 

the corrosion product was observed, Figure 6-29. While the morphology does appear to remain 

consistent with those seen previously, the underlying corrosion film appears to have lost some 

structural definition, becoming more amorphous in nature, Figure 6-29(a-f). Since the Raman 

data suggested formation of γ-Fe2O3 it is possible that is what constitutes the deposit, Figure 

6-29(h-i). After 548 days exposure, the morphology of the corrosion product has not changed 

but there appears to be more of it, Figure 6-30. The scattered deposit appears to be in the form 

of particulates ≤ 1 µm in diameter, Figure 6-30. Similar features are observed after 716 days, 

Figure 6-31. It is likely these particulates were formed by oxidation of dissolved Fe2+ to the 

highly insoluble Fe3+ state when the solution absorbed O2 during the loss of atmospheric control 

in the anaerobic chamber. The presence of dissolved O2 would also lead to a thickening of the 

general corrosion layer. After the full exposure period of 910 days, the extent of deposition has 

increased suggesting the surface is slowly accumulating FeIII oxide deposited from the solution, 

Figure 6-32, with the Raman analysis suggesting the deposit is amorphous or has been 

converted to Fe3O4 by galvanic coupling to the corroding steel.  
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Figure 6-27: SEM micrographs recorded on a specimen surface after 4 days of exposure to 

solution (ii) showing a lightly corroded surface with (c) early stages of visible pearlite corrosion; 

(d-f) a region of crystalline corrosion product; (g-i) a more heavily corroded location. 
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Figure 6-28: SEM micrographs recorded on a specimen surface after 110 days of exposure to 

solution (ii) showing: (a-f) regions of the general surface with a compact underlying film with 

interspersed platelet structures; (g-h) regions with overlying corrosion product deposits; (i) 

localized corrosion products on the order of 15-30 µm. 
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Figure 6-29: SEM micrographs recorded on a specimen surface after 252 days of exposure to 

solution (ii) showing: (a-f) the general surface and underlying corrosion layer; (g-i) corrosion 

product deposits, possible γ-Fe2O3. 
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Figure 6-30: SEM micrographs recorded on a specimen surface after 548 days of exposure to 

solution (ii) showing: (a-f) the general surface with increasing levels of corrosion product 

deposits; (g-i) the morphology of the overlying corrosion product deposits. 
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Figure 6-31: SEM micrographs recorded on a specimen surface after 716 days of exposure to 

solution (ii) showing: (a-f) regions with a visible underlying corrosion layer; (g-i) a region 

exhibiting extensive overlying corrosion product deposits. 
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Figure 6-32: SEM micrographs recorded on a specimen surface after 910 days of exposure to 

solution (ii) showing: (a-c) the general underlying corrosion film; (d-i) the increasing extent of 

surface coverage by corrosion product deposits. 
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6.3.2.3. Focused Ion Beam Milling 

Figure 6-33(a-c) shows a FIB cross-section of a specimen after 252 days of exposure for the area 

shown in Figure 6-29(f). The use of the backscatter detector highlights the interface between 

the base metal (bright) and the oxide film (dark), Figure 6-33(b). From the cross-section it can be 

seen that the penetration under a compact film is minor, whereas regions covered with a more 

textured film experience more extensive penetration. This is clear in Figure 6-33(d-f) which 

shows a cross-section cut through one of the overlying corrosion product deposits. The 

corrosion product film to the side of the deposit is very thin while the location directly under the 

deposit experienced more significant penetration. The EDX map shown in Figure 6-33(f) 

highlights the interface of the metal (blue) and the oxide film (pink). Although not clear in these 

images it is possible the extent of corrosion, and hence corrosion product deposition, is dictated 

by the grain structure of the steel. Figure 6-33(g-i) shows a cross-section through a large 

corrosion deposit on the sample surface. It is clear that the corrosion deposit is thickest over the 

more extensively corroded area confirming the porosity of the deposit at this location.  

Figure 6-34 shows FIB cross-sections for three locations on the sample removed after 548 days 

of exposure to solution (ii). By comparison to the images in Figure 6-33, the cross-sections show 

that the corrosion product has thickened from ≤ 1 µm to as thick as ~3 µm in some places over 

the additional 296 days of exposure. Figure 6-34(e) shows bright bands within the oxide 

structure. While first noted after the 252 day exposure period, Figure 6-33(h), the bands are 

much more extensive and clearly much larger and more resolved. An EDX map for Fe and C 

recorded on this location, Figure 6-34(f), shows that the bright bands are residual Fe3C while the 

dark bands are Fe oxide. This confirms that the α-Fe lamellae in the pearlite grains have been 

converted to oxide. It would also appear that the locations covered by thicker deposits and 

experiencing deeper metal penetration coincide with the pearlite structure, Figure 6-34(b) and 

(e). Figure 6-34(g-i) shows a cross-section cut through a large corrosion deposit, which is porous 

and non-protective in nature and located over a region of localized corrosion. Again, Fe3C is seen 

in the oxide, Figure 6-34(h).  

Figure 6-35 shows FIB cross-sections cut on a specimen exposed for the full 910 day exposure 

period. The compact film on the steel surface has achieved a thickness in the range of ~3-5 µm 

and is generally uniform and in most locations appears protective. Locations which have 

undergone deeper penetration are clearly spreading laterally across the surface rather than 
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developing into deep pits. The accumulation of an outer layer of deposited particles can be 

clearly seen.  

 

 

Figure 6-33: FIB cross-section micrographs recorded on a specimen surface after 252 days of 

exposure to solution (ii) showing: (a-c) that penetration beneath the compact film is minor; (d-f) 

a cut through an overlying deposit which has experienced more extensive penetration; (g-i) a cut 

through a large corrosion deposit at a location which has experienced more extensive corrosion. 

The backscatter image in (b) highlights the interface between the base metal (bright) and the 

oxide film (dark). EDX maps (f and i) further highlight the interface by mapping of elemental 

oxygen (pink) and iron (blue). 
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Figure 6-34: FIB cross-section micrographs recorded on a specimen surface after 548 days of 

exposure to solution (ii) showing: (a-f) a thickening of the film to ~3 µm with more penetrating 

damage beneath thicker regions; (e) bright bands within the oxide structure, which the EDX map 

(f) for iron (blue) and carbon (green), shows are residual Fe3C bands of the pearlite grains; (g-i) a 

cut through a large deposit which appears porous and non-protective. The EDX maps (c,i) 

highlight the interface between the base metal and the oxide film by mapping of elemental 

oxygen (pink) and iron (blue).  
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Figure 6-35: FIB cross-section micrographs recorded on a specimen surface after 910 days of 

exposure to solution (ii) showing: (a-c) a ~3-5 µm thick corrosion layer which appears generally 

uniform and protective; (d-i) regions showing deeper penetration which has spread laterally 

rather than developing as deep pits. The backscatter images ((b-c), (e-f), (i)) highlight the 

interface between the base metal (bright) and the oxide film (dark). 
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6.3.3. Solution (iii): Buffered, High Chloride Concentration 

6.3.3.1. Raman and Infrared Spectroscopies 

The evolution of the corrosion product compositions formed in solution (iii) can be seen in 

Figure 6-36 through Figure 6-41. Figure 6-36 shows the Raman spectra recorded on a steel 

coupon after 4 days of exposure. As observed in the other solutions, most locations analyzed 

exhibit the features expected after a period of humid air corrosion; a peak at 672 cm-1 with a 

shoulder at 720 cm-1 (region (1)); a broad featureless band between 200 and 570 cm-1 (region 

(2)); and a broad band in the region 1200 to 1700 cm-1 (region (3)). Again, as observed in the 

other solutions the prominence of the shoulder at 720 cm-1 coincides with the intensity in region 

(2) and the presence of the broad band in region (3) consistent with the presence of corroded 

locations on the steel surface prior to first immersion. For location (4), Raman bands located at 

437 cm-1 and 512 cm-1 can be attributed to the Fe2+–OH and Fe3+–OH stretching modes of green 

rust (GR) [2, 6, 12-15] suggesting its rapid formation at some locations. Given the high [Cl-] it is 

likely that the coordinating interlayer anion of the GR is Cl- with a structure of 

[𝐹𝑒3
𝐼𝐼𝐹𝑒𝐼𝐼𝐼(𝑂𝐻)8

−]+[𝐶𝑙 ∙ 𝑛𝐻2𝑂]− [16-18]. Spectrum (5) shows a single band at 1088 cm-1 which 

can be attributed to the ν1 C–O symmetric stretching of a coordinated CO3
2- species [2, 19-21]. It 

has been reported that the reference Raman band of siderite (FeCO3) is 1089 cm-1 [19] while 

chukanovite (Fe2(OH)2CO3) has a reference band at 1070 cm-1 [20]. The band in spectrum (5) 

appears at 1088 cm-1 suggesting the formation of FeCO3. However, the multiple species present 

on the sample surface may cause some shifting of the Raman bands, and the previously 

observed formation of Fe2(OH)2CO3 in a HCO3
-/CO3

2- solution (Chapter 5) suggests that the 

formation of Fe2(OH)2CO3 is likely. Interestingly, when the peak at 1088 cm-1 is present the peak 

in region (1) is minor and regions (2) and (3) are effectively absent, suggesting the carbonate 

containing phase masks the underlying surface phases.  

The masking is apparently confirmed by the Raman spectra recorded after 14 days exposure, 

Figure 6-37(a), which show the peak in region (1) is generally visible in the absence of the peak 

at 1073 cm-1 and vice-versa. As observed over the shorter exposure period, the formation of GR 

persists. The band found at 1071/1073 cm-1 in spectra (1) and (3-5) is consistent with the 

coordinated CO3
2- anion of Fe2(OH)2CO3[22, 23], whose presence is confirmed by the FTIR 

spectra presented in Figure 6-37(b).  
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After an exposure time of 109 days, the only visible Raman bands are those at 1082 cm-1, Figure 

6-38(a), which the FTIR spectra, Figure 6-38(b), confirm is Fe2(OH)2CO3. The absence of Raman 

bands for any other species suggests that the Fe2(OH)2CO3 corrosion product has become 

ubiquitous and is thick enough to totally obscure any other corrosion product. Fe2(OH)2CO3 

remains the only corrosion product visible in both the Raman and FTIR spectra after 252 days, 

Figure 6-39. After 365 days a Raman band for Fe3O4 at 670 cm-1 is observed at location (6), 

Figure 6-40, suggesting formation of a Fe3O4 sublayer has occurred. The presence of Raman 

bands at both 1069 and 1085 cm-1 suggests both Fe2(OH)2CO3 and FeCO3 are present. As 

outlined in Chapter 4, Fe2(OH)2CO3 is thermodynamically metastable with respect to FeCO3 and 

its conversion over extended periods of time would not be unexpected [24-26]. This 

phenomenon is observed in archaeological artefacts which have developed inner Fe2(OH)2CO3 

and outer FeCO3 corrosion layers after exposure to anoxic groundwaters containing HCO3
-/CO3

2- 

[20, 23, 24, 26-28]. After a final exposure period of 639 days, the Raman spectra show broad 

peaks at 552-544 cm-1 which may be due to the presence of Fe3O4, Figure 6-41(a). This is 

consistent with the observation of Fe3O4 after 365 days. However, the band at 552 cm-1 is not 

the main band of Fe3O4 suggesting that the corrosion product may be highly amorphous or not 

attributable to Fe3O4. The sharp Raman band at 1071 cm-1 along with the FTIR spectra show that 

Fe2(OH)2CO3 remains the dominant corrosion product found on the surface, Figure 6-41(b). This 

emergence of Fe3O4 over a long exposure period indicates its on-going formation throughout 

the exposure period.  
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Figure 6-36: Raman spectra (1-5) recorded at various locations on a steel specimen after 4 days 

of exposure to solution (iii). 

 

 

Figure 6-37: (a) Raman spectra (1-5) and (b) FTIR spectra recorded at various locations on a steel 

specimen after 14 days of exposure to solution (iii). 
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Figure 6-38: (a) Raman spectra (1-6) and (b) FTIR spectra recorded at various locations on a steel 

specimen after 109 days of exposure to solution (iii). 

 

 

 

Figure 6-39: (a) Raman spectra (1-3) and (b) FTIR spectra recorded at various locations on a steel 

specimen after 252 days of exposure to solution (iii). 
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Figure 6-40: (a) Raman spectra (1-6) and (b) FTIR spectra recorded at various locations on a steel 

specimen after 365 days of exposure to solution (iii). 

 

 

 

Figure 6-41: (a) Raman spectra (1-5) and (b) FTIR spectra recorded at various locations on a steel 

specimen after 639 days of exposure to solution (iii). 
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6.3.3.2. Scanning Electron Microscopy 

Figure 6-42 shows the SEM images recorded on the surface of a specimen removed after 4 days 

of exposure to solution (iii). Figure 6-42(a-c) shows the surface is completely covered by an 

oxide with the needle-like acicular morphology expected for Fe2(OH)2CO3 consistent with the 

Raman spectra. Several locations across the surface also displayed large localized corrosion 

product deposits (60-100 µm in diameter), Figure 6-42(d-f) and (g-i), suggesting the formation of 

these deposits may be due to pitting. The morphology of these deposits is different to that of 

the surrounding Fe2(OH)2CO3, and could correspond to the GR or γ-Fe2O3 observed in the Raman 

spectra. After a 14 day exposure, the morphology of the corrosion products remains unchanged, 

Figure 6-43. Figure 6-43(c) and (e-f) show large hexagonal crystals which are observed on the 

Fe2(OH)2CO3 surface layer. The structure is likely to be the GR which was identified in the Raman 

analyses. Evidence for small locally corroded sites remains, but they are not as obvious as those 

observed in the first few days, Figure 6-43(g-i).  

After 109 days, a deposit with a different morphology emerges in the Fe2(OH)2CO3 crystals. This 

is most obvious in Figure 6-44(c). The multi-faceted cubes suggest the formation of FeCO3. Since 

Fe2(OH)2CO3 is thermodynamically metastable with respect to FeCO3 this may indicate the slow 

transformation of Fe2(OH)2CO3 into FeCO3.  

After 252 days of exposure these cubic structures become more regular and denser, supporting 

the claim that they are FeCO3 crystals formed from the transformation of Fe2(OH)2CO3, Figure 

6-45. The remainder of the surface remains covered in a coherent layer of Fe2(OH)2CO3 as 

suggested by the Raman and FTIR analyses as well as hexagonal crystals (Figure 6-45(e) and (g)) 

which may indicate the continued presence of GR. After 365 days the surface remains covered 

with Fe2(OH)2CO3 but an additional morphology is observed. Small amorphous deposits are 

visible, Figure 6-46(c), on top of the Fe2(OH)2CO3 deposit. In addition, Figure 6-46(d-f) and (g-h) 

show the localized corrosion deposits remain. It is possible, and in effect most likely, these 

features were present throughout the total exposure period. The morphology within deposits at 

these locations appears to be a mixture of Fe2(OH)2CO3 and FeCO3.  

After a final exposure period of 639 days the surface remains covered in Fe2(OH)2CO3 but the 

small deposits are more numerous in number, Figure 6-47(a-c). In addition, localized corrosion 

deposits, Figure 6-47(d-i), remain frequent across the surface. The morphology of such features 
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appears less crystalline and may account for the additional features seen in the Raman spectra 

which cannot be attributed to Fe2(OH)2CO3.  

 

 

 

Figure 6-42: SEM micrographs recorded on a steel specimen after 4 days of exposure to solution 

(iii) showing: (a-c) needle-like acicular crystals expected of Fe2(OH)2CO3; (d-i) large localized 

corrosion products 60-100 µm in diameter. 
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Figure 6-43: SEM micrographs recorded on a steel specimen after 14 days of exposure to solution 

(iii) showing that the morphology of the corrosion product has remained unchanged but that 

small hexagonal crystals (c, e-f) appear across the surface and evidence for small locally 

corroded sites (g-i). 
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Figure 6-44: SEM micrographs recorded on a steel specimen after 109 days of exposure to 

solution (iii) showing the emergence of a different morphology of cubic structure best observed 

in (c) which suggests the formation of FeCO3. 
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Figure 6-45: SEM micrographs recorded on a steel specimen after 252 days of exposure to 

solution (iii) showing a general Fe2(OH)2CO3 film with an increase in the density of the cubic 

structure, supporting FeCO3 formation as well as hexagonal crystals in (e) and (g) which may 

indicate the presence of GR. 
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Figure 6-46: SEM micrographs recorded on a steel specimen after 365 days of exposure to 

solution (iii) showing: (a-c) the dominance of Fe2(OH)2CO3 with small amorphous deposits (c) 

visible on top of the Fe2(OH)2CO3 deposit; (d-i) two regions of localized corrosion deposits. 
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Figure 6-47: SEM micrographs recorded on a steel specimen after 639 days of exposure to 

solution (iii) showing: (a-c) a Fe2(OH)2CO3 film with more numerous small deposits; (d-f) a region 

with a localized corrosion deposit; (g-i) the size distribution of additional localized corrosion 

deposits. 
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6.3.3.3. Focused Ion Beam Milling 

Figure 6-48 shows cross-sectional images for three locations after 252 days of exposure. Figure 

6-48(a-b) shows a cross-section cut through the Fe2(OH)2CO3 film formed ubiquitously across the 

surface. The film is grown from Fe2+ dissolved at that location, the crystals being directly 

attached to the substrate. This is confirmed in the backscatter image, Figure 6-48(b), which 

highlights the location of the metal/oxide interface. Growth of a porous film directly from the 

base metal suggests, at least in the short term, that a corrosion inhibiting film is not forming as 

observed in solutions (i) and (ii). In addition, the damage to the metal surface is uniform across 

the cross-section indicating these are locations of general corrosion.  

However, cross-sectional analyses of the isolated deposits show they are located over regions of 

enhanced localized corrosion. At these locations the deposit is highly porous, Figure 6-48(c-d), 

and not protective. A similar feature is shown in Figure 6-48(e-f), and suggests Fe2(OH)2CO3 has 

reformed at the metal/oxide interface underneath the original deposit.  

Figure 6-49 shows the FIB cross-sections of three locations on the sample surface after 546 days 

of exposure. Cross-sectioning of the large deposit shown in Figure 6-49(a-c) indicates that this is 

a more active location on the steel surface. However, the backscatter image shows only shallow 

penetration into the metal, Figure 6-49(c). The thickness of the deposit over such a shallow 

penetration indicates it is porous and unprotective. In contrast, the deposit shown in Figure 

6-49(d-f) shows a significant penetration into the sample surface indicating an active pitting 

corrosion process had occurred. The bright region seen in the center of Figure 6-49(f) is more 

than likely due to back deposited Ga from the milling process rather than a location of 

uncorroded steel. Cross-sectional analysis of the general Fe2(OH)2CO3 surface film shows the 

thickness of the film has remained unchanged and confirms that the corrosion process has not 

accelerated and the Fe2(OH)2CO3 film is likely protective, Figure 6-49(g-h).  

Figure 6-50 shows the FIB cross-sections for two locations after 639 days of exposure. Cross-

sectioning of a large deposit (Figure 6-47(a-c)) shows the film to be porous suggesting this site 

remained active. Beneath the deposit, damage has penetrated ~8 µm into the steel while the 

surrounding areas show little penetration.  A cross-section through the general surface film, 

Figure 6-50(d-f), shows little damage to the base metal. While the Fe2(OH)2CO3 deposit looks 
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unprotective it is possible that the growth of a Fe3O4 layer (detected by Raman spectroscopy) on 

the steel surface is providing corrosion protection.  

 

 

Figure 6-48: FIB cross-section micrographs recorded on a steel specimen after 252 days of 

exposure to solution (iii) showing: (a-b) the general Fe2(OH)2CO3 film in which the crystals are 

attached directly to the substrate which is confirmed by the backscatter image (b); (c-d) a cut 

through a region of isolated deposit showing that they are located over regions of active 

localized corrosion; (e-f) a cut through a region of active corrosion suggesting Fe2(OH)2CO3 has 

reformed at the metal/oxide interface under the original deposit. 
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Figure 6-49: FIB cross-section micrographs recorded on a steel specimen after 546 days of 

exposure to solution (iii) showing: (a-c) a cut through a localized deposit indicating a more active 

location with shallow penetration shown in the backscatter image (c); (d-f) a cut through a 

region with significant penetration indicating an active pitting process had occurred; (g-h) a cut 

through the general Fe2(OH)2CO3 film showing that its thickness has remained unchanged. 
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Figure 6-50: FIB cross-section micrographs recorded on a steel specimen after 639 days of 

exposure to solution (iii) showing: (a-c) a cut through a large deposit showing the film at this 

location to be porous and suggesting this site remained active; (d-f) a cut through the general 

Fe2(OH)2CO3 covered surface which shows little penetration into the metal. The backscatter 

images in (b), and (d) highlight the interface between the base metal (bright) and oxide film 

(dark).  
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6.3.4. Solution (iv): Simulated Groundwater Solution 

6.3.4.1. Raman Spectroscopy 

Figure 6-51 shows the Raman spectra recorded on the specimen exposed for 5 days to solution 

(iv). The minor Raman bands found at 426 and 502 cm-1 in spectrum (1) are attributable to GR, 

but the lack of any other Raman bands makes determination of the coordinating interlayer 

anion difficult. It is possible that, due to the complex nature of the simulated groundwater 

solution, any one of OH-, Cl-, CO3
2-, and SO4

2- could contribute to the GR structure. Spectrum (2) 

is consistent with Raman spectra observed for CaSO4 (gypsum) [29]. The internal modes of the 

SO4
2- anion can be assigned to Raman bands at 415 and 494 cm-1 for the ν2 out-of-plane bending 

mode, the bands at 619 and 670 cm-1 to the ν4 in-plane bending mode, 1008 cm-1 to the ν1 

symmetric stretching, and 1136 cm-1 to the ν3 asymmetric stretching. The very small peak at 

1008 cm-1 in spectrum (3) confirms the formation of CaSO4, with the remaining Raman bands 

indicating the formation of the CaCO3 polymorph, aragonite [5, 30]. Previously, in Chapter 5, it 

was shown that a steel coupon exposed to a similar simulated groundwater solution for 60 days 

was covered with vaterite, another polymorph of CaCO3. Since the Raman spectra for each 

polymorph (including calcite) differ it is possible to distinguish between them. While the Raman 

bands located at 152 and 1085 cm-1 in spectrum (3) could be attributed to aragonite or calcite, 

the bands at 206 cm-1 and 704 cm-1 confirm the formation of aragonite. The bands at 152 and 

206 cm-1 are attributed to the rotational and translational lattice modes of the CaCO3 structure 

while the bands at 704 and 1085 cm-1 are due to the ν4 in-plane bending and ν1 symmetric 

stretching, respectively. Spectrum (4) indicates a mixture of both CaSO4 (Raman bands 415, 494, 

619, 670, 1008, and 1136 cm-1) and aragonite (Raman bands 208 and 1084 cm-1) is present. The 

persistence of minor peaks for GR in most of the spectra indicates that the surface is not fully 

protected by the CaSO4 and CaCO3 deposits over this early exposure period.   

After an exposure period of 42 days the Raman spectra confirm the presence of GR (432 and 

511 cm-1) and the non-uniform presence of CaSO4 and CaCO3, Figure 6-52. However, the 

addition of a band at 672 cm-1 in spectra (3) and (4) indicates formation of Fe3O4, and the peaks 

at 1135 and 1600 cm-1 in spectrum (4) show the residual Fe3C from corroded pearlite grains is 

just detectable.  
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After an exposure period of 110 days, Figure 6-53, Fe3O4 (676 cm-1) becomes detectable at many 

locations while the bands for GR are no longer observed. Spectrum (3) shows that when CaSO4 

and CaCO3 are not present (no bands at 1010 and 1084 cm-1) the underlying corroded surface is 

visible (peaks at 1347 and 1604 cm-1 in region (3)). Spectra (4-6) indicate that when CaSO4 and 

CaCO3 are dominant on the surface the corrosion products on the underlying steel surface 

cannot be detected. The decrease in the relative peak height (1010 cm-1 for CaSO4) to that for 

CaCO3 (1084 cm-1) suggests an on-going formation of CaCO3 or a redissolution of CaSO4.   

After a period of 728 days exposure, Figure 6-54, Raman bands for CaSO4 and CaCO3 are no 

longer present. Instead spectra (1-5) all exhibit Raman bands at 533-550 cm-1 and 668-679 cm-1, 

consistent with the presence of Fe3O4 [3, 5, 7]. However, the broadness and relatively low 

intensity of the peaks suggest that the Fe3O4 is neither highly crystalline nor very thick contrary 

to what might be expected after such a prolonged exposure period. This observation suggests 

continued coverage of the surface by CaSO4 and CaCO3 crystals may have hindered steel 

corrosion leading to the growth of the Fe3O4 film. After the full 910 day exposure period, Figure 

6-55, the surface is free of any CaSO4 or CaCO3 deposits. The very weak and broad band at 549 

cm-1 can be attributed to poorly crystalline Fe3O4, suggesting its growth has been severely 

hindered by the early presence of CaSO4/CaCO3. The peaks at 1300-1400 cm-1 and 1615 cm-1, 

attributable to residual Fe3C on corroded pearlite grains, confirm observable corrosion has 

occurred.  
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Figure 6-51: Raman spectra (1-4) recorded at various locations on a steel specimen after 5 days 

of exposure to solution (iv). 

 

Figure 6-52: Raman spectra (1-6) recorded at various locations on a steel specimen after 42 days 

of exposure to solution (iv). 
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Figure 6-53: Raman spectra (1-6) recorded at various locations on a steel specimen after 110 

days of exposure to solution (iv). 

 

Figure 6-54: Raman spectra (1-5) recorded at various locations on a steel specimen after 728 

days of exposure to solution (iv). 
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Figure 6-55: Raman spectra (1-4) recorded at various locations on a steel specimen after 910 

days of exposure to solution (iv). 

 

6.3.4.2. Scanning Electron Microscopy 

Figure 6-56(a-c) shows the extent of coverage by the CaSO4 and CaCO3 after an exposure period 

of only 5 days. The fine morphology of the crystal structures can be seen in Figure 6-56(d-f). The 

long rectangular crystals are the expected structure for CaSO4 and the star-shaped crystals are 

the expected structure of aragonite. The finely detailed spheres, Figure 6-56(f), are likely a 

polymorph of CaCO3 associated with the aragonite crystals seen growing in close proximity. 

Alternatively, they could be calcite, or possibly vaterite, the latter having been seen in 

electrochemical experiments performed in a similar solution in Chapter 5. Figure 6-56(g-i) shows 

an area of exposed steel which exhibits the surface roughening seen on the surfaces corroded in 

the Cl- only solutions. The emerging crystalline corrosion product seen in Figure 6-56(i) is likely 

the GR identified by Raman analysis.  

After 42 days the underlying metal surface is almost completely obscured by the CaSO4 and 

CaCO3 crystals, Figure 6-57. After 56 days this coverage persists, Figure 6-58, but some regions 
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of the steel surface are visible and appear corroded, Figure 6-58(b-c), exhibiting a roughness 

similar to that observed on a specimen corroded in a similar solution (solution (iv)) in Chapter 5, 

on which Fe3O4 was observed under a deposit of vaterite crystals.  

After 728 days the surface is clear of CaSO4/CaCO3 crystals which have redissolved, Figure 6-59. 

The visible surface shows a coherent oxide layer (Figure 6-59(a-c) and (d-f)), and a significant 

corrosion product deposit (Figure 6-59(g-i)). The morphology of the general film, as well as the 

deposits, resembles those seen for the Fe3O4 film formed over an extended period of time in 

solution (ii) containing a similar [Cl-]. The apparently amorphous nature of the film would explain 

the broad and low intensity Raman bands observed for Fe3O4. Figure 6-60 shows that after the 

full exposure period of 910 days the corrosion product morphology remains unchanged. An 

apparently thick and protective layer of Fe3O4 remains with a scattered deposit spread across 

the surface. The similarity of the composition and morphology of the films grown over extended 

time periods in both solution (ii) and (iv) confirm that, regardless of the crystal coverage, the 

corrosion behaviour is similar in the two concentrated Cl- solutions and that the additional 

groundwater ions of solution (iv) do not play a strong role in the corrosion product identity and 

morphology. 
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Figure 6-56: SEM micrographs recorded on a steel specimen after 5 days of exposure to solution 

(iv) showing: (a-c) the extend of CaSO4 and CaCO3 crystal coverage; (d-f) the fine crystal 

morphology with the long rectangular crystals the expected structure of CaSO4 and the star-

shaped crystals the expected structure of CaCO3 (aragonite); (g-i) a region of the exposed steel 

exhibiting a roughening of the surface. 
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Figure 6-57: SEM micrographs recorded on a steel specimen after 42 days of exposure to solution 

(iv) showing that the underlying steel surface is almost completely obscured by the CaSO4 and 

CaCO3 crystals.  
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Figure 6-58: SEM micrographs recorded on a steel specimen after 56 days of exposure to solution 

(iv) showing that the crystal coverage continues while regions of visible surface (b-c) appear 

roughened. 

 

 

 

 



www.manaraa.com

224 
 

 

 

 

 

 

 

 

Figure 6-59: SEM micrographs recorded on a steel specimen after 728 days of exposure to 

solution (iv) showing: (a-f) the visible surface which exhibits a coherent oxide layer; (g-i) a region 

with a significant corrosion product deposit. 
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Figure 6-60: SEM micrographs recorded on a steel specimen after 910 days of exposure to 

solution (iv) showing an apparently thick protective layer of Fe3O4 with scattered corrosion 

deposits. 
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6.3.4.3. Focused Ion Beam Milling 

Due to the coverage of the steel surface by the CaSO4 and CaCO3 crystals, the cutting of FIB 

cross-sections was not possible for samples extracted prior to 728 days of exposure. Figure 6-61 

shows the FIB cross-sections for two locations on the steel surface after 728 days. Cross-

sectioning through both the deposit (Figure 6-61(a-c)) and the more generally covered surface 

(Figure 6-61(d-f)) showed that no significantly greater penetration into the steel occurred under 

the deposit but some regions of the general surface appeared to be more extensively corroded 

than others. This is in contrast to samples removed at a similar time interval from solution (ii) 

(with a similar [Cl-]) in which the corrosion across the general surface was more-or-less uniform. 

However, the characteristic bands of Fe3C left behind by the corrosion of the pearlite structure 

can be seen within the oxide film, Figure 6-61(e-f).  

Figure 6-62 shows the FIB cross-sections after the full exposure period of 910 days. The cross-

sections show considerable void space appears between the corrosion product deposit and the 

steel substrate. Backscatter images, Figure 6-62(b) and (d), highlight the separation between the 

oxide film and base metal. The depth of penetration appears similar to that on the sample 

exposed for 728 days. The delamination of the film from the steel may be due to the drying out 

process when the specimen was extracted from the solution. Comparison of images of these 

specimens to those for specimens exposed to solution (ii) indicates more extensive corrosion 

occurred in the absence of the groundwater species. This may be due to protection of the steel 

due to the deposition of CaSO4 and CaCO3. Only after the crystals have redissolved was active 

corrosion of the base metal visible.   
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Figure 6-61: FIB cross-section micrographs recorded on a steel specimen after 728 days of 

exposure to solution (iv) showing: (a-c) a cut through a localized deposit showing some 

undercutting of the substrate; (d-f) a cut through a general corroded region showing no 

significant penetration into the steel. The backscatter image in (f) highlights the interface 

between the base metal (bright) and oxide film (dark). 

 

Figure 6-62: FIB cross-section micrographs recorded on a steel specimen after 910 days of 

exposure to solution (iv) showing regions exhibiting considerable void space between the product 

and substrate. Backscatter images (b, d) highlight the separation of the oxide film (dark) and the 

base metal (bright). 
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6.4. DISCUSSION 

In the solutions dominated by Cl- the evolution of the corrosion process can be directly observed 

since the additional anions present in the other solutions do not obscure the changes on the 

surface due to corrosion. Due to the prior exposure of the specimens to a humid laboratory 

atmosphere the surfaces are already visibly corroded prior to first immersion. The dominant 

surface corrosion layer is γ-Fe2O3 and some areas of the surface, possibly those associated with 

pearlite grains, are already visibly more corroded than others.  

Over the first ~50 days this γ-Fe2O3 disappears most likely via its reduction driven by galvanic 

coupling to the corroding steel substrate. This would be consistent with the claims of Stratmann 

et al. [31] who proposed that in anoxic environments, such as periods of high water content in 

the pore structure of rusts formed during wet/dry cycling, the dissolution of iron metal is 

balanced by the reduction of FeIII oxides within the rust layers. In our experiments this reductive 

dissolution of the FeIII oxides could occur in the acidic conditions (6.3 ± 0.5) used which, 

according to Stratmann et al. [31] would lead to the reduction of γ-Fe2O3 to Fe3O4 via the 

following mechanism: 

 𝐹𝑒 → 𝐹𝑒2+ + 2𝑒− (6-81) 

 4𝛾 − 𝐹𝑒2𝑂3 + 𝐹𝑒2+ + 2𝑒− → 3𝐹𝑒3𝑂4 (6-82) 

 

At the pH used in our experiments the solubility of Fe2+ would be high, which would kinetically 

favour reaction 6-82. In addition, this is facilitated by the similarity in crystal structures of the 

two oxides. Both exhibit inverse spinel structures in which the O2- sub-lattices are almost 

identical, the only difference being the slightly different octahedral and tetrahedral holes 

occupied by the Fe2+/Fe3+ cations [31, 32].  

After ~100 days, Fe3O4 is the dominant surface phase and appears to be present as a uniformly 

distributed film. Also, only minor amounts of deposited oxide are observed over moderate 

exposure periods (up to ~250 days) but a significant deposit accumulates over extended 

exposure periods. These observations are not unexpected since the Fe2+ solubility is quite high 

at pH 6.3. 

Corrosion appears to be preferentially located at pearlite grains, the cross-sectional analysis of 

the samples exposed for extended periods of time (252 to 910 days) showing the remnants of 
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Fe3C bands from the original pearlite structure of the steel coupon. This was particularly evident 

as bright bands within the darker oxide layer as shown in the cross-section in Figure 6-34(e). EDX 

mapping of this location showed a coincidence in the signals for both elemental Fe and C, 

confirming the presence of Fe3C inside the surrounding Fe3O4 film, Figure 6-34(f). Several 

authors have stated that the Fe3C of the pearlite structure has a lower overpotential for the 

cathodic reaction than the surrounding α-Fe and could, therefore, support microgalvanic 

coupling by accelerating the cathodic reaction leading to the preferential dissolution of the α-Fe 

in the pearlite grains [33-37]. The conversion of α-Fe lamellae to Fe3O4 leads eventually to the 

Fe3C bands being entrapped within the oxide. While this process is most evident in Figure 

6-34(e-f), it can be seen within most of the FIB cross-sections suggesting that this process has 

occurred uniformly at pearlite grains across the entire sample surface.  

Some authors have suggested that exposure of Fe3C causes an acceleration in the corrosion rate 

in this manner [35, 36]. However, this acceleration may only be temporary since, as claimed by 

others [37], the corrosion rate would eventually be suppressed by the accumulation of Fe3O4 

within the reduced Fe3C lamellae. However, bands within the already conductive Fe3O4 facilitate 

the coupling of these locations as cathodes supporting corrosion of α-Fe grains [36]. The 

observation of some apparent intergranular corrosion between grains may support this claim. 

This intergranular effect was most apparent in Figure 6-19(c) and may be involved in the 

creation of the void space beneath the corrosion product layer, Figure 6-19(g-i).  

The early behaviour in the dilute (solution (i)) and concentrated (solution (ii)) chloride solutions 

is effectively the same. This is not unexpected under anoxic conditions, the results in Chapter 4 

showing that this difference in [Cl-] was only important when traces of dissolved O2 were 

present when a Cl- catalyzed passivation of the surface could occur at the higher concentration. 

However, the O2 incursion which occurred after 182 days in the high [Cl-] solution did lead to a 

change in behaviour between the two solutions. As expected, oxidation to γ-Fe2O3, and possibly 

other Fe oxyhydroxides, was observed. Subsequently, the consequences of this change in redox 

conditions were observable over the following 718 days. The final general corrosion product 

layer was thicker than in the low [Cl-] solution. This can be attributed partially to the extended 

exposure period but also to the increase in overall extent of corrosion due to the availability of 

an increased O2 inventory. However, while the Raman analyses show oxidation to γ-Fe2O3 occurs 

as a consequence of the presence of O2, it also shows that eventually Fe3O4 is re-established as 
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the dominant corrosion product. This can be attributed to the microgalvanic coupling of γ-Fe2O3 

reduction to Fe3O4 to Fe dissolution as described above. Unfortunately, the deconvolution of the 

Raman spectra in region (1) becomes too unreliable to demonstrate the effectiveness of this 

conversion. The slow accumulation of deposited particulates can also be attributed to the 

temporary establishment of more oxidizing conditions which lead to the oxidation of soluble 

Fe2+ and the deposition of the considerably less soluble Fe3+.  

In the presence of HCO3
-/CO3

2- (solution (iii)) the surface rapidly becomes covered by 

Fe2(OH)2CO3, although the formation of GR is observed after short exposure periods. It is 

possible that the formation of GR can be attributed to trace levels of O2 in the solution and 

catalysis of the oxidation of Fe2+ to Fe3+ reaction at the high [Cl-] [38-48]. Since GR is metastable 

with respect to Fe3O4, especially as conditions become more anoxic, Fe3O4 is probably partially 

formed as a conversion product of the GR dehydration and oxidation [1, 49] accounting for its 

disappearance beyond short exposure periods.  

While Fe2(OH)2CO3 was expected to form, based on the observation that it was formed in 

shorter (60 days) experiments as described in Chapter 5, its formation in this experiment was 

considerably faster. The freshly polished steel coupon exposed to solution (iii) (Chapter 5) only 

slowly grew an interfacial layer of Fe3O4 followed by the slow accumulation of an outer 

Fe2(OH)2CO3 layer. For the specimens described in this chapter the surface was already partially 

covered with a thin γ-Fe2O3 layer formed by humid air exposure prior to immersion. It is likely 

that the high [Fe2+], caused by the conversion of this oxide to Fe3O4 coupled to dissolution in the 

presence of [HCO3
-/CO3

2-] at a pH >8.9, promoted the formation of Fe2(OH)2CO3 over other iron 

carbonates such as FeCO3 [23, 24, 26, 50-53]. ICP-OES analysis of the solution after a period of 

roughly 252 days showed no detectable traces of dissolved iron in the solution. This indicates 

that the available Fe2+ is rapidly converted to Fe2(OH)2CO3.  

The combination of an inner Fe3O4 interfacial layer on the metal surface with an outer 

Fe2(OH)2CO3 layer would offer an explanation of the corrosion kinetics and the growth of the 

film over the full 639 day period. Thin interfacial layers of Fe3O4/γ-Fe2O3 are well known to 

control the kinetics of iron corrosion [54, 55], and it has been suggested that the protective 

nature of a Fe2(OH)2CO3 film can be attributed to the presence of a thin underlying spinel oxide 

layer [52, 54-56]. The SEM images and FIB cross-sections of samples exposed for the full 639 day 

exposure period indicated a constant corrosion rate since the corrosion product layer did not 
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thicken with exposure time, Figure 6-48(b) and Figure 6-49(h). This observation is consistent 

with published results [57] that showed a constant corrosion rate for iron in carbonated media 

due to the parallel growth and dissolution of an interfacial spinel layer on the metal surface.  

The eventual formation of cubic and multi-faceted cubic crystals within the Fe2(OH)2CO3 film 

after 109 days exposure and their persistence for the duration of the experiment suggests the 

eventual conversion of Fe2(OH)2CO3 to FeCO3. The metastable nature of Fe2(OH)2CO3 with 

respect to FeCO3 over extended periods of time is thought to be responsible for the formation of 

Fe2(OH)2CO3 and FeCO3 strata on archaeological artefacts exposed to carbonated media [23, 24, 

26, 53, 55]. The metastable nature of Fe2(OH)2CO3 with respect to FeCO3 is illustrated by the 

Pourbaix diagram in Figure 6-63 [26]. FeCO3 ingrowths in Fe2(OH)2CO3 corrosion products have 

previously been seen on multiple natural samples [22, 58].  

 

 

Figure 6-63: Pourbaix diagram of iron in carbonated aqueous media at 25°C for equilibria 

involving Fe2(OH)2CO3 (dotted lines) and FeCO3 (solid lines) [26]. 
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Pandarinathan et al. [53] have reported that defects within the corrosion layers, as well as 

mixed oxides of Fe2(OH)2CO3 and FeCO3, have the ability to induce localized corrosion and 

pitting processes, which could account for the localized corrosion events seen in Figure 6-48 to 

Figure 6-50, after 252, 546, and 639 days of exposure. Their voltammetric measurements on 

steel exposed to carbonated media under a simulated sand deposit showed a positive hysteresis 

in the reverse scan taken to indicate the development of the active locations shown to exist by 

SEM.  

In the simulated groundwater solution the rapid formation of gypsum (CaSO4) and aragonite 

(CaCO3) deposits in as little as 2 days (Appendix A) obscures the early stages of any corrosion 

processes, although the presence of GR is detectable. The development of CaCO3 deposits have 

been linked to reduced corrosion rates on steel surfaces due to their ability to act as a physical 

barrier blocking the surface from oxidizing species [59-63].  

The composition of the exposure solution influences which of the polymorphs (calcite, 

aragonite, vaterite) will form and the nature of the steel surface affects the morphology and the 

rate of coverage [59, 61]. The development of aragonite over calcite is thought to increase the 

corrosion resistance of the base metal due to its better adhesion to the metal surface compared 

to calcite [63]. Previous authors have suggested that the presence of Mg2+ can promote the 

formation of aragonite over calcite in freely corroding systems [60-63]. Ben Amor et al. [61] 

suggest that aragonite may form exclusively when [Mg2+] ≥ 0.27 M. The high [Mg2+] in the 

simulated groundwater (0.337 M) could then explain why the only polymorph to form on the 

sample surface was aragonite. At low [Mg2+] the Mg2+ ions are adsorbed onto the surface of 

calcite nuclei and block their further growth. At higher [Mg2+] the Mg2+ ions can be partially 

incorporated into the calcite crystal structure increasing its solubility and decreasing its ability to 

provide surface protection [63]. However, Mg2+ ions have no apparent effect on the growth of 

aragonite, and it is the hindrance of calcite formation which promotes the formation of 

aragonite. Moller [60] reported a reduction in steel corrosion rates in the presence of Mg2+ 

compared to rates measured in an identical solution without Mg2+. This reduction in rate was 

attributed to aragonite formation promoted by Mg2+ leading to a more comprehensive coverage 

of the surface and a limitation of the diffusion of oxidants to the surface.  

The high density of aragonite crystals grown in the simulated groundwater (solution (iv)) appear 

to impede, at least initially, the steel corrosion rate which would explain the difference in 
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corrosion product morphology and thickness after exposure to solutions (ii) and (iv), which differ 

only in the addition of the added groundwater ions such as Ca2+ and Mg2+. However, while the 

crystal coverage may appear complete, EIS studies have shown corrosion could occur [61]. In 

our experiment this would explain the detection of GR and Fe3O4 over the initial 110 day 

exposure period and the continued growth of Fe3O4 until the conclusion of the exposure term at 

910 days. That corrosion had occurred was confirmed by the Raman and SEM analyses once the 

CaSO4 and CaCO3 had redissolved.   

6.5. SUMMARY AND CONCLUSIONS 

The long-term corrosion behaviour of steel was investigated in solutions which varied in [Cl-] and 

pH as well as in a simulated sedimentary groundwater solution. These studies are meant to be 

complimentary to the electrochemical experiments outlined in Chapter 5.  

The initial surface layer, present on first immersion, was shown to be γ-Fe2O3, formed as a result 

of humid air exposure prior to immersion. Over the first 100 days of exposure this film was 

reduced to Fe3O4 by galvanic coupling to the dissolution of the steel substrate,  

 Fe → 𝐹𝑒2+ + 2𝑒− (4-83) 

 4γ − 𝐹𝑒2𝑂3 + 𝐹𝑒2+ + 2𝑒− → 3𝐹𝑒3𝑂4 (4-84) 

 

with the high solubility of Fe2+ at the experimental pH kinetically promoting the conversion. 

Corrosion appeared to be preferentially located at pearlite grains with oxide accumulating in the 

Fe3C bands as the α-Fe lamellae were converted to Fe3O4. This preferential corrosion of pearlite 

can be attributed to the lower overpotential of Fe3C lamellae for the cathodic reaction allowing 

them to act as preferential cathodes. However, this process may be suppressed over time by the 

slow accumulation of an Fe3O4 layer on the surface and within the Fe3C lamellae.  

While the corrosion in solutions (i) and (ii) was very similar in the initial stages, an incursion of 

O2 caused a change in behaviour for solution (ii) which was shown to develop γ-Fe2O3 corrosion 

products as well as a generally thicker corrosion product layer. However, Fe3O4 was eventually 

established as the dominant corrosion product, confirming the microgalvanic coupling of γ-Fe2O3 

reduction to Fe3O4 to Fe dissolution.  
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The addition of HCO3
-/CO3

2- leading to an increase in pH to 8.85 led to the rapid formation of 

Fe2(OH)2CO3. The more rapid growth of this layer (in comparison to that in a similar solution 

(Chapter 5)) was attributed to the initial γ-Fe2O3 layer formed via humid air exposure prior to 

immersion. The high local [Fe2+] produced by the reduction of this layer to Fe3O4 promoted the 

rapid formation of Fe2(OH)2CO3. The reduction of γ-Fe2O3 leading to the formation of an 

interfacial layer of Fe3O4 combined with the outer layer of Fe2(OH)2CO3 was shown to slow the 

corrosion kinetics. The protective nature of Fe2(OH)2CO3 has often been attributed to a thin 

interfacial spinel oxide layer as seen in these experiments. However, the eventual 

thermodynamic transformation of Fe2(OH)2CO3 to FeCO3, consistent with the strata formed on 

archaeological artefacts, appeared to induce some localized corrosion/pitting processes 

observed in SEM/FIB images.  

Addition of anticipated groundwater ions caused the formation of CaSO4 and CaCO3 crystals in 

as little as 2 days, which, consistent with the findings described in Chapter 5, were shown to 

impede the steel corrosion due to their ability to provide a physical barrier between oxidizing 

species and the steel surface. This crystal coverage explains the differences in morphology and 

thickness of the corrosion product layers grown in solutions (ii) and (iv) (which have similar [Cl-]). 

However, corrosion was shown to occur after the dissolution of the crystals in the form of GR 

and Fe3O4. In addition, the high Mg2+ content of the groundwater solution was shown to 

promote the formation of aragonite, a CaCO3 polymorph known to cause a reduction in steel 

corrosion rates.  
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Chapter 7 

 

Conclusions and Future Research 

7.1         CONCLUSIONS 

The primary focus of this research was on the corrosion of A516 Gr70 steel under the 

environmental conditions anticipated in a nuclear waste repository. Various environmental 

features, such as anion content (Cl-, HCO3
-/CO3

2-, and SO4
2-), trace O2 content, and pH were 

investigated. Also, the effects of H2O2 on the steel corrosion process were investigated to 

determine how corrosion of the inside of a container would be influenced by the radiolytic 

oxidants produced by the fuel waste form inside the container.  

The influence of H2O2 on the corrosion of carbon steel was investigated under deaerated 

conditions, when traces of O2 could be present, and under anaerobic conditions, when the [O2] 

would be expected to be at the ppb level. Under anaerobic conditions active steel corrosion, 

producing Fe2+ and H2 was maintained up to an added [H2O2] of 6 µM. For deaerated conditions, 

passivation leading to pitting occurred for added [H2O2] ≥ 10 to 15 µM but was attributed to the 

presence of traces of dissolved O2 despite continuous Ar-sparging. While passivation of the 

surface should not occur under anaerobic conditions, the presence of non-passivating FeIII-

containing corrosion products confirmed the interaction of the H2O2 with the steel. Model 

calculations showed that [H2O2] > 10-9 M are effectively unachievable at the steel surface and 

therefore, it can be concluded that active steel corrosion will be maintained inside a failed waste 

container, and that the soluble corrosion products  (Fe2+ and H2) will be available to suppress 

fuel corrosion and radionuclide release.  

The electrochemical behaviour as well as the corrosion products formed on carbon steel was 

shown to be dependent on the anion content of the exposure environment, specifically, Cl-, 

HCO3
-/CO3

2-, and SO4
2-. An increase in the [Cl-] led to an increase in ECORR and RP which suggested 

a less reactive surface state explained by the ability of Cl- to induce passivation by the 

stabilization of FeIII oxides in the presence of traces of dissolved O2. At high concentrations, Cl- 

exerts a dual role first catalyzing surface oxidation leading to passivity, and then causing the 

initiation of breakdown sites on the passivated surface. The presence of Cl- was also shown to 

influence the final corrosion products with low [Cl-] favouring the formation of Fe3O4 while high 

[Cl-] promotes the formation of γ-FeOOH.  
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The addition of [HCO3
-/CO2-] was shown to accelerate the anodic dissolution of Fe2+ by 

stabilization of soluble complexes such as FeHCO3
+ and Fe(HCO3)2. This led to a competition 

between the stabilization of Fe2+ by HCO3
-/CO3

2- and the oxidation to FeIII oxides catalyzed by Cl-. 

An increase in [HCO3
-/CO3

2-] also shifted the breakdown potential to more positive values due to 

the ability of the HCO3
-/CO3

2- to buffer local acidity and prevent pit propagation. Even at low 

[HCO3
-/CO3

2-] (0.001 M), HCO3
-/CO3

2- can buffer the pH at breakdown sites allowing 

repassivation to occur.  

The increased values of ECORR and RP in the presence of SO4
2- indicated that this anion does not 

prevent the Cl- catalyzed oxidation to FeIII oxide in the presence of traces of O2. Passivation of 

the surface in this manner causes more frequent breakdown processes but their propagation 

appears limited due to the inability of SO4
2- to promote Fe2+ dissolution. Additionally, SO4

2- was 

shown to have a more pronounced effect on the film breakdown potential than HCO3
-/CO3

2-, 

suggesting it may be more strongly adsorbed on the FeIII oxide surface. 

Further electrochemical studies for periods of up to 60 days were performed in an anaerobic 

chamber to determine the behaviour of carbon steel corrosion over extended periods of time in 

the absence of traces of O2. These studies focused on the effects of [Cl-], HCO3
-/CO3

2-, and a 

simulated sedimentary clay groundwater solution. An increase in [Cl-] caused an increase in the 

corrosion rate of the steel, as indicated by an increased roughness of the steel surface. At the 

higher [Cl-] (4.77 M) an acceleration of the cathodic kinetics was observed which was attributed 

to the exposure of Fe3C in the pearlite grains during corrosion, leading to an increased surface 

area on which the cathodic reaction could occur.  

Even in a solution with low [HCO3
-] (0.002213 M; solution (i)), chukanovite (Fe2(OH)2CO3) was 

formed in non-uniform patches on the steel surface. While generally expected to form in slightly 

alkaline conditions, it was shown that the interfacial [Fe2+] was most likely the main factor 

leading to Fe2(OH)2CO3 deposition. Increased dissolution of the steel led to an increased 

interfacial [Fe2+] which was then able to combine with available HCO3
- in the bulk solution 

leading to the precipitation of Fe2(OH)2CO3.  

Addition of anticipated groundwater ions for a sedimentary clay environment (solution (iv)) 

caused an initial suppression of the anodic kinetics followed by a constant corrosion rate. The 

difference in behaviour between solution (iv) and solution (ii) with comparable [Cl-] and [HCO3
-] 
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showed that the groundwater ions influence the steel corrosion rate. The initial increase in RP 

likely reflects the formation of the Fe3O4 film and a deposited layer of vaterite (CaCO3), the latter 

offering partial protection to the steel surface. 

The addition of 0.10 M HCO3
-/CO3

2- to buffer the pH to 8.85 led to a significant decrease in the 

corrosion rate. While not observed by Raman spectroscopy, Fe3O4 formation would be expected 

to reduce the corrosion rate while the outer layer of Fe2(OH)2CO3 observed would provide 

additional protection of the surface. Growth of such a barrier layer would explain the constant 

corrosion rate observed after 10 days of exposure. The subsequent noise observed in the ECORR 

and RP values is then attributed to the unstable nature of this Fe3O4 layer with its dissolution 

leading to the precipitation of Fe2(OH)2CO3. 

Complementary to electrochemical studies, a series of long-term exposure experiments were 

conducted, for exposure periods of up to 30 months, to determine the changes in corrosion 

product composition and morphology over extended corrosion periods. The initial surface layer, 

present on first immersion, was shown to be γ-Fe2O3, formed as a result of humid air exposure 

prior to immersion. Over the first 100 days of exposure this film was reduced to Fe3O4 by 

galvanic coupling to the dissolution of the steel substrate,  

 Fe → 𝐹𝑒2+ + 2𝑒−  

 4γ − 𝐹𝑒2𝑂3 + 𝐹𝑒2+ + 2𝑒− → 3𝐹𝑒3𝑂4  

 

with the high solubility of Fe2+ at the experimental pH kinetically promoting the conversion. 

Corrosion appeared to be preferentially located at pearlite grains with oxide accumulating in the 

Fe3C bands as the α-Fe lamellae were converted to Fe3O4. This preferential corrosion of pearlite 

can be attributed to the lower overpotential of Fe3C lamellae for the cathodic reaction allowing 

them to function as preferential cathodes. However, this process may be suppressed over time 

by the slow accumulation of an Fe3O4 layer on the surface and within the Fe3C lamellae.  

While the corrosion in solutions (i) and (ii) was very similar in the initial stages, an incursion of 

O2 caused a change in behaviour for solution (ii) which was shown to develop γ-Fe2O3 corrosion 

products as well as a generally thicker corrosion product layer. However, Fe3O4 was eventually 

established as the dominant corrosion product, confirming the microgalvanic coupling of γ-Fe2O3 

reduction to Fe3O4 to Fe dissolution.  
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The addition of HCO3
-/CO3

2- leading to an increase in pH to 8.85 led to the rapid formation of 

Fe2(OH)2CO3. The more rapid growth of this layer (in comparison to that in a similar solution 

(Chapter 5)) was attributed to the initial γ-Fe2O3 layer formed via humid air exposure prior to 

immersion. The high local [Fe2+] produced by the reduction of this layer to Fe3O4 promoted the 

rapid formation of Fe2(OH)2CO3. The reduction of γ-Fe2O3 leading to the formation of an 

interfacial layer of Fe3O4 combined with the outer layer of Fe2(OH)2CO3 was shown to slow the 

corrosion kinetics. The protective nature of Fe2(OH)2CO3 has often been attributed to a thin 

interfacial spinel oxide layer as seen in these experiments. However, the eventual 

thermodynamic transformation of Fe2(OH)2CO3 to FeCO3, consistent with the strata formed on 

archaeological artefacts, appeared to induce some localized corrosion/pitting processes 

observed in SEM/FIB images.  

Addition of anticipated groundwater ions caused the formation of CaSO4 and CaCO3 crystals in 

as little as 2 days, which, consistent with the findings described in Chapter 5, were shown to 

impede the steel corrosion due to their ability to provide a physical barrier between oxidizing 

species and the steel surface. This crystal coverage explains the differences in morphology and 

thickness of the corrosion product layers grown in solutions (ii) and (iv) (which have similar [Cl-]). 

However, corrosion was shown to occur after the dissolution of the crystals in the form of GR 

and Fe3O4. In addition, the high Mg2+ content of the groundwater solution was shown to 

promote the formation of aragonite, a CaCO3 polymorph known to cause a reduction in steel 

corrosion rates.  

7.2       CONSEQUENCES OF STEEL CONTAINER CORROSION 

Based on the studies in this thesis, a number of conclusions can be made about the viability of a 

carbon steel waste container.  

The results of Chapter 4 explored the effects of trace levels of O2 on steel corrosion. Such 

conditions could arise after short periods of emplacement of a container in the repository if 

saturation of the clay surrounding the container occurs before the complete consumption of the 

initially trapped O2. Reaction with trace levels of O2 could lead to passivation when the general 

corrosion rate would be very slow but minor amounts of pitting could occur. This only seems 

likely in very saline groundwaters if the pH is ≥ 9. Under less alkaline conditions passivation 

leading to pitting should not occur. 
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If totally anoxic conditions prevail the FeIII oxide initially present on the container surface on 

emplacement will reduce to Fe3O4 through galvanic coupling to steel dissolution leading to 

minor localized corrosion damage. Subsequently, corrosion will be general and in the absence of 

trace levels of O2 no passivation/pitting would be expected. The slow accumulation of a Fe3O4 

film would be expected.   

Studies in simulated groundwater solutions showed that the presence of additional 

groundwater ions would promote the formation of calcareous deposits. These deposits would 

be partially protective but steel corrosion would continue slowly beneath them.  

The results in Chapter 3 show that the radiolytic production of oxidants, in particular H2O2, 

inside a failed waste container will allow continued corrosion of the steel. The concentration of 

H2O2 that could reach the inner container wall should be negligible. Consequently, steel 

corrosion leading to the production of H2O2 scavengers (Fe2+ and H2) will continue, leading to a 

suppression of radionuclide release from the fuel wasteform.   

7.3       FUTURE RESEARCH 

In this study, an attempt was made to determine the corrosion behaviour of A516 Gr70 carbon 

steel in a variety of sedimentary clay groundwater environments in both the presence and 

absence of trace levels of O2.  

The studies performed in the presence of H2O2 (Chapter 3) examine the consequences of 

container failure. However, the lack of repeat experiments under both the deaerated and 

anaerobic environments suggests that additional experiments for each would lend insight into 

their reproducibility. In addition, it would be beneficial to perform the anaerobic experiment 

under increased [H2O2] to confirm that while the H2O2 is seen to react with the steel surface, it is 

unable to induce passivation. This would confirm the results of the deaerated experiments 

which suggested the passivation was due to trace levels of O2 within the solution.  

Under anaerobic conditions, both short-term electrochemical (Chapter 5) and long-term surface 

analysis (Chapter 6) studies were performed. However, these studies did not present any 

quantitative results of the corrosion damage under these conditions. It would be beneficial to 

perform quantitative analysis on the film thicknesses and depths of corrosion penetration in 

each of the studied environments through the use of FIB cross-sectioning and statistical analysis. 
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In addition, it may prove beneficial to use mass loss measurements to convert the corrosion 

damage into a rate of penetration in order to determine the time at which failure of the 

container could occur.   

In this study the corrosion behaviour was monitored under ambient conditions. However, during 

the initial stages of container corrosion the temperature of the repository may be as high as 

80°C. As such, it would be beneficial to supplement the results found within this study with 

results of similar experiments performed at elevated temperatures more representative of the 

DGR environment. In addition, experiment may be performed under a range of temperature 

conditions from ambient to 80°C to study the evolution of the container corrosion behaviour as 

the DGR begins to cool over time.  

When emplaced in a repository the container would be surrounded by compacted clay. This will 

lead to modification of the local exposure environment and introduce the possibility that 

corrosion will be affected by the ability of this clay to absorb dissolved Fe(II) species. A similar 

series of experiments to those presented in this thesis should be performed in the presence of 

compacted clay. 
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Appendix A 

 

Supporting Raman Spectra and SEM images for the Long-Term Evolution of Carbon Steel 

Corrosion under Anoxic Simulated Groundwater Environments 

A.1. REFERENCE RAMAN SPECTRA 

 

 

 

Figure A-1: Reference Raman spectrum for Fe3O4 (magnetite). 
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Figure A-2: Reference Raman spectrum for γ-Fe2O3 (maghemite). 

 

 

Figure A-3: Reference Raman spectrum for α-FeOOH (goethite). 
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Figure A-4: Reference Raman spectrum for γ-FeOOH (lepidocrocite). 
 

A.2. SOLUTION (I): LOW CHLORIDE CONCENTRATION 

A.2.1. Raman Spectroscopy 

 

Figure A-5: (a) Raman spectra recorded at various locations on a steel specimen after 2 days of 

exposure to solution (i); (b) deconvolution of the spectrum closest to the sample average. 
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Figure A-6: (a) Raman spectra recorded at various locations on a steel specimen after 4 days of 

exposure to solution (i); (b) deconvolution of the spectrum closest to the sample average. 

 

 

 

Figure A-7: (a) Raman spectra recorded at various locations on a steel specimen after 7 days of 

exposure to solution (i); (b) deconvolution of the spectrum closest to the sample average. 
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Figure A-8: (a) Raman spectra recorded at various locations on a steel specimen after 14 days of 

exposure to solution (i); (b) deconvolution of the spectrum closest to the sample average. 

 

 

 

Figure A-9: (a) Raman spectra recorded at various locations on a steel specimen after 28 days of 

exposure to solution (i); (b) deconvolution of the spectrum closest to the sample average. 
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Figure A-10: (a) Raman spectra recorded at various locations on a steel specimen after 42 days 

of exposure to solution (i); (b) deconvolution of the spectrum closest to the sample average. 

 

 

 

Figure A-11: (a) Raman spectra recorded at various locations on a steel specimen after 56 days 

of exposure to solution (i); (b) deconvolution of the spectrum closest to the sample average. 
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Figure A-12: (a) Raman spectra recorded at various locations on a steel specimen after 110 days 

of exposure to solution (i); (b) deconvolution of the spectrum closest to the sample average. 

 

 

 

Figure A-13: (a) Raman spectra recorded at various locations on a steel specimen after 182 days 

of exposure to solution (i); (b) deconvolution of the spectrum closest to the sample average. 
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Figure A-14: (a) Raman spectra recorded at various locations on a steel specimen after 252 days 

of exposure to solution (i); (b) deconvolution of the spectrum closest to the sample average. 

 

 

 

Figure A-15: (a) Raman spectra recorded at various locations on a steel specimen after 365 days 

of exposure to solution (i); (b) deconvolution of the spectrum closest to the sample average. 
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Figure A-16: (a) Raman spectra recorded at various locations on a steel specimen after 540 days 

of exposure to solution (i); (b) deconvolution of the spectrum closest to the sample average. 

 

 

 

Figure A-17: (a) Raman spectra recorded at various locations on a steel specimen after 604 days 

of exposure to solution (i); (b) deconvolution of the spectrum closest to the sample average. 
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Figure A-18: Evolution of the area ratio between the Fe3O4 (672 cm-1) and γ-Fe2O3 (705 cm-1) 

Raman peaks after exposure to solution (i), calculated from the deconvoluted Raman spectra. 
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A.2.2. Scanning Electron Microscopy 

 

 

Figure A-19: SEM micrographs recorded on a specimen surface after 2 days of exposure to 

solution (i) showing: (a-c) the distribution of crystalline corrosion product; (d-f) the general 

surface morphology; (g-i) a region exhibiting a more significant degree of corrosion. 
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Figure A-20: SEM micrographs recorded on a specimen surface after 7 days of exposure to 

solution (i) showing: (a-c) the general surface morphology; (d-f) a region of crystalline corrosion 

product; (g-i) a region exhibiting a larger corrosion deposit and the surrounding surface 

morphology. 

 

 

 

 

 



www.manaraa.com

257 
 

 

 

 

 

 

 

Figure A-21: SEM micrographs recorded on a specimen surface after 28 days of exposure to 

solution (i) showing: (a-c) the general surface morphology; (d-f) a region of minor corrosion 

product accumulation; (g-i) a region of heavier corrosion product accumulation.  
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Figure A-22: SEM micrographs recorded on a specimen surface after 42 days of exposure to 

solution (i) showing: (a-c) the general surface morphology; (d-e) a location with deposited 

corrosion product; (f) a region exhibiting the characteristic lamella of Fe3C left after the 

preferential dissolution of α-Fe from pearlite grains; (g-h) a region of localized damage; (i) a 

possible pitted location. 
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Figure A-23: SEM micrographs recorded on a specimen surface after 56 days of exposure to 

solution (i) showing: (a-f) the general surface morphology; (g-h) a region with a larger corrosion 

deposit; (i) a region exhibiting the characteristic lamella of Fe3C left after the preferential 

dissolution of α-Fe from pearlite grains. 
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Figure A-24: SEM micrographs recorded on a specimen surface after 182 days of exposure to 

solution (i) showing: (a-f) the general surface morphology; (g-i) a region of localized corrosion 

damage. 
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Figure A-25: SEM micrographs recorded on a specimen surface after 540 days of exposure to 

solution (i) showing: (a-c) the general surface morphology; (d-f) a region exhibiting additional 

corrosion deposits; (g-i) a region of localized corrosion damage. 
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A.3. SOLUTION (II): HIGH CHLORIDE CONCENTRATION 

A.3.1. Raman Spectroscopy 

 

 

Figure A-26: (a) Raman spectra recorded at various locations on a steel specimen after 2 days of 

exposure to solution (ii); (b) deconvolution of the spectrum closest to the sample average. 

 

 

Figure A-27: (a) Raman spectra recorded at various locations on a steel specimen after 4 days of 

exposure to solution (ii); (b) deconvolution of the spectrum closest to the sample average. 
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Figure A-28: (a) Raman spectra recorded at various locations on a steel specimen after 7 days of 

exposure to solution (ii); (b) deconvolution of the spectrum closest to the sample average. 

 

 

 

Figure A-29: (a) Raman spectra recorded at various locations on a steel specimen after 14 days 

of exposure to solution (ii); (b) deconvolution of the spectrum closest to the sample average. 
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Figure A-30: (a) Raman spectra recorded at various locations on a steel specimen after 28 days 

of exposure to solution (ii); (b) deconvolution of the spectrum closest to the sample average. 

 

 

 

Figure A-31: (a) Raman spectra recorded at various locations on a steel specimen after 42 days 

of exposure to solution (ii); (b) deconvolution of the spectrum closest to the sample average. 
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Figure A-32: (a) Raman spectra recorded at various locations on a steel specimen after 56 days 

of exposure to solution (ii); (b) deconvolution of the spectrum closest to the sample average. 

 

 

 

Figure A-33: (a) Raman spectra recorded at various locations on a steel specimen after 110 days 

of exposure to solution (ii); (b) deconvolution of the spectrum closest to the sample average. 
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Figure A-34: (a) Raman spectra recorded at various locations on a steel specimen after 182 days 

of exposure to solution (ii); (b) deconvolution of the spectrum closest to the sample average. 

 

 

 

Figure A-35: (a) Raman spectra recorded at various locations on a steel specimen after 252 days 

of exposure to solution (ii); (b) deconvolution of the spectrum closest to the sample average. 
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Figure A-36: (a) Raman spectra recorded at various locations on a steel specimen after 365 days 

of exposure to solution (ii); (b) deconvolution of the spectrum closest to the sample average. 

 

 

 

Figure A-37: (a) Raman spectra recorded at various locations on a steel specimen after 548 days 

of exposure to solution (ii); (b) deconvolution of the spectrum closest to the sample average. 
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Figure A-38: (a) Raman spectra recorded at various locations on a steel specimen after 716 days 

of exposure to solution (ii); (b) deconvolution of the spectrum closest to the sample average. 

 

Figure A-39: Raman spectra recorded at various locations on a steel specimen after 910 days of 

exposure to solution (ii). 
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Figure A-40: Evolution of the area ratio between the Fe3O4 (672 cm-1) and γ-Fe2O3 (705 cm-1) 

Raman peaks after exposure to solution (ii), calculated from the deconvoluted spectra. 
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Figure A-41: Comparison of the evolution in the area ratio for the Fe3O4 (672 cm-1) and γ-Fe2O3 

(705 cm-1) Raman peaks between solutions (i) and (ii), calculated from the deconvoluted Raman 

spectra. 
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A.3.2. Scanning Electron Microscopy 

 

 

 

 

 

Figure A-42: SEM micrographs recorded on a specimen surface after 2 days of exposure to 

solution (ii) showing: (a-c) the general surface morphology; (d-f) a region of localized crystalline 

corrosion product; (g-i) the distribution and morphology of heavily corroded locations. 
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Figure A-43: SEM micrographs recorded on a specimen surface after 7 days of exposure to 

solution (ii) showing: (a-c) the general surface morphology; (d-f) a region with crystalline 

corrosion product; (g-h) a region exhibiting more extensive corrosion damage; (i) a location with 

a large localized corrosion product deposit. 
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Figure A-44: SEM micrographs recorded on a specimen surface after 14 days of exposure to 

solution (ii) showing: (a-c) crystalline corrosion product; (d-f) a region of secondary corrosion 

product morphology; (g-i) the general surface morphology. 
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Figure A-45: SEM micrographs recorded on a specimen surface after 28 days of exposure to 

solution (ii) showing: (a-c) a region of general corrosion product deposit; (d-f) a more 

significantly corroded region with crystalline morphology; (g-i) a region of localized corrosion 

damage. 

 

 

 

 

 



www.manaraa.com

275 
 

 

 

 

 

 

 

Figure A-46: SEM micrographs recorded on a specimen surface after 42 days of exposure to 

solution (ii) showing: (a-c) the general surface morphology; (d-f) a region of more significant 

corrosion product deposit; (g-i) a region of localized corrosion damage. 
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Figure A-47: SEM micrographs recorded on a specimen surface after 56 days of exposure to 

solution (ii) showing: (a-f) the general surface morphology; (g-i) a region of localized corrosion 

damage. 
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Figure A-48: SEM micrographs recorded on a specimen surface after 182 days of exposure to 

solution (ii) showing: (a-c) the general surface morphology; (d-f) a region of more significant 

corrosion damage; (g-h) a region exhibiting more significant corrosion product deposits; (i) the 

underlying general surface morphology beneath the corrosion product deposits. 
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Figure A-49: SEM micrographs recorded on a specimen surface after 365 days of exposure to 

solution (ii) showing: (a-c) the general surface morphology; (d-f) a more significant crystalline 

corrosion product deposit; (g-i) a region of the general surface highlighting the smooth 

underlying corrosion product layer. 
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A.4. SOLUTION (III): BUFFERED, HIGH CHLORIDE CONCENTRATION 

A.4.1. Raman Spectroscopy 

 

 

Figure A-50: Raman spectra recorded at various locations on a steel specimen after 2 days of 

exposure to solution (iii). 
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Figure A-51: Raman spectra recorded at various locations on a steel specimen after 4 days of 

exposure to solution (iii). 

 

Figure A-52: Raman spectra recorded at various locations on a steel specimen after 7 days of 

exposure to solution (iii). 
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Figure A-53: (a) Raman and (b) FTIR spectra recorded at various locations on a steel specimen 

after 14 days of exposure to solution (iii). 

 

 

 

Figure A-54: (a) Raman and (b) FTIR spectra recorded at various locations on a steel specimen 

after 30 days of exposure to solution (iii). 
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Figure A-55: (a) Raman and (b) FTIR spectra recorded at various locations on a steel specimen 

after 38 days of exposure to solution (iii). 

 

 

 

Figure A-56: (a) Raman and (b) FTIR spectra recorded at various locations on a steel specimen 

after 56 days of exposure to solution (iii). 
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Figure A-57: (a) Raman and (b) FTIR spectra recorded at various locations on a steel specimen 

after 109 days of exposure to solution (iii). 

 

 

 

Figure A-58: (a) Raman and (b) FTIR spectra recorded at various locations on a steel specimen 

after 182 days of exposure to solution (iii). 
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Figure A-59: (a) Raman and (b) FTIR spectra recorded at various locations on a steel specimen 

after 252 days of exposure to solution (iii). 

 

 

 

Figure A-60: (a) Raman and (b) FTIR spectra recorded at various locations on a steel specimen 

after 365 days of exposure to solution (iii). 
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Figure A-61: (a) Raman and (b) FTIR spectra recorded at various locations on a steel specimen 

after 546 days of exposure to solution (iii). 

 

 

 

Figure A-62: (a) Raman and (b) FTIR spectra recorded at various locations on a steel specimen 

after 639 days of exposure to solution (iii). 
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A.4.2. Scanning Electron Microscopy 

 

 

 

Figure A-63: SEM micrographs recorded on a specimen surface after 2 days of exposure to 

solution (iii) showing: (a-c) the general surface with no apparent corrosion product; (d-f) a region 

of crystalline corrosion product; (g-i) a region of localized corrosion product deposit. 
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Figure A-64: SEM micrographs recorded on a specimen surface after 7 days of exposure to 

solution (iii) showing: (a-f) the general surface morphology, consistent with Fe2(OH)2CO3; (g-i) a 

region of localized corrosion product deposit. 
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Figure A-65: SEM micrographs recorded on a specimen surface after 30 days of exposure to 

solution (iii) showing: (a-f) the general surface morphology, consistent with Fe2(OH)2CO3; (g-i) a 

region of localized corrosion product deposit. 
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Figure A-66: SEM micrographs recorded on a specimen surface after 38 days of exposure to 

solution (iii) showing: (a-i) the general surface morphology, consistent with Fe2(OH)2CO3. 
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Figure A-67: SEM micrographs recorded on a specimen surface after 56 days of exposure to 

solution (iii) showing: (a-f) the general surface morphology, consistent with Fe2(OH)2CO3. 
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Figure A-68: SEM micrographs recorded on a specimen surface after 182 days of exposure to 

solution (iii) showing: (a-i) the general surface morphology, consistent with Fe2(OH)2CO3. 
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Figure A-69: SEM micrographs recorded on a specimen surface after 546 days of exposure to 

solution (iii) showing: (a-f) the general surface morphology, consistent with Fe2(OH)2CO3; (g-i) the 

size distribution of localized corrosion product deposits. 
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A.5. SOLUTION (IV): SIMULATED GROUNDWATER SOLUTION 

A.5.1. Raman Spectroscopy 

 

 

Figure A-70: Raman spectra recorded at various locations on a steel specimen after 3 days of 

exposure to solution (iv). 
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Figure A-71: Raman spectra recorded at various locations on a steel specimen after 5 days of 

exposure to solution (iv). 

 

Figure A-72: Raman spectra recorded at various locations on a steel specimen after 7 days of 

exposure to solution (iv). 
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Figure A-73: Raman spectra recorded at various locations on a steel specimen after 28 days of 

exposure to solution (iv). 

 

Figure A-74: Raman spectra recorded at various locations on a steel specimen after 42 days of 

exposure to solution (iv). 



www.manaraa.com

296 
 

 

 

Figure A-75: Raman spectra recorded at various locations on a steel specimen after 56 days of 

exposure to solution (iv). 

 

Figure A-76: Raman spectra recorded at various locations on a steel specimen after 110 days of 

exposure to solution (iv). 
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Figure A-77: Raman spectra recorded at various locations on a steel specimen after 728 days of 

exposure to solution (iv). 

 

Figure A-78: Raman spectra recorded at various locations on a steel specimen after 910 days of 

exposure to solution (iv). 



www.manaraa.com

298 
 

 

A.5.2. Scanning Electron Microscopy 

 

 

 

Figure A-79: SEM micrographs recorded on a specimen surface after 2 days of exposure to 

solution (iv) showing: (a-c) the morphology of crystal deposits; (d-f) the general surface 

morphology beneath the crystals; (g-i) three locations showing the distribution of crystal 

coverage. 
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Figure A-80: SEM micrographs recorded on a specimen surface after 7 days of exposure to 

solution (iv) showing: (a-b) a region where the underlying surface remains visible; (c) the 

preferential dissolution of α-Fe from the pearlite grains; (d-f) a region of significant crystal 

coverage; (g-i) a secondary location of crystal coverage and the morphology of the formed 

crystals. 
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Figure A-81: SEM micrographs recorded on a specimen surface after 14 days of exposure to 

solution (iv) showing: (a-f) regions in which the underlying surface morphology remains visible; 

(g-i) a region of significant crystal coverage. 
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Figure A-82: SEM micrographs recorded on a specimen surface after 28 days of exposure to 

solution (iv) showing: (a-c) a region of significant crystal coverage; (d-i) two regions where the 

underlying surface morphology is visible. 
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